Skip to main content
Log in

Tissue Engineering Construction from 3D Porous Ceramic Carriers and Multipotent Stromal Cells for the Repair of Bone Tissue Defects

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The tissue engineering construction was developed from human bone marrow multipotent stromal cells and 3D porous foamed—ceramic carriers of a zirconium oxide--aluminum oxide system. The carriers had no cytotoxic activity and were potent in maintaining the cell adhesion and proliferation. We developed the method for inoculation and cultivation of bone marrow multipotent stromal cells on these carriers. The optimal time of incubation to obtain a tissue engineering construction was estimated. Bone marrow multipotent stromal cells could be cultured at a depth of 9 mm from the edge of the matrix. The tissue engineering construction holds promise for the repair of extensive defects in bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Grigor’yants, V. A. Badalyan, S. G. Kurdyumov, and K. S. Desyatnichenko, Paradontologiya, 3, No. 24, 71–72 (2002).

    Google Scholar 

  2. R. V. Deev, A. A. Isaev, A. Yu. Kochish, and R. M. Tikhilov, Kletochnaya Transplantatsiya Tkanevaya Inzheneriya, 4, No. 46, 18–30 (2007).

    Google Scholar 

  3. V. V. Stupak, V. V. Ostanin, M. Yu. Sizikov, and E. R. Chernykh, Method for Autotransplantation of Immobilized Stromal Stem Cells from the Bone Marrow [in Russian], Inventor’s Certificate No. 2269961 of 20.02.2006.

  4. L. Bacakova, E. Filova, F. Rypacek, et al., Physiol. Res., 53, Suppl. 1, S35–S45 (2004).

    Google Scholar 

  5. O. Bostman, U. Paivarinta, E. Partio, et al., J. Bone Joint. Surg. Am., 74, No. 4, 1021–1031 (1992).

    PubMed  CAS  Google Scholar 

  6. H. Kim, S. Shin, H. Kim, et al., J. Biomater., 22, No. 6, 485–504 (2007).

    Article  Google Scholar 

  7. N. W. Marion and J. J. Mao, Methods Enzimol., 420, 339–361 (2006).

    Article  CAS  Google Scholar 

  8. G. F. Muschler, S. Negami, A. Hyodo, et al., Clin. Orthop. Relat. Res., 328, 250–260 (1996).

    Article  PubMed  Google Scholar 

  9. M. F. Pittenger, J. D. Mosca, and K. R. McIntosh, Curr. Top. Microbiol. Immunol., 251, 3–11 (2000).

    PubMed  CAS  Google Scholar 

  10. A. J. Salgado, J. T. Oliveira, A. J. Pedro, and R. L. Reis, Curr. Stem Cell. Res. Ther., 1, No. 3, 345–364 (2006).

    PubMed  CAS  Google Scholar 

  11. S. Srouji, T. Kizhner, and E. Livne, Regen Med., 1, No. 4, 519–528 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. R. Quan, D. Yang, X. Wu, et al., J. Mater. Sci. Mater. Med., 19, No. 1, 183–187 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. W. R. Walsh, J. Harrison, A. Loefler, et al., Clin. Orthop. Relat. Res., 375, 258–266 (2000).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Bukharova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 38–47, 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukharova, T.B., Fatkhudinov, T.K., Tsedik, L.V. et al. Tissue Engineering Construction from 3D Porous Ceramic Carriers and Multipotent Stromal Cells for the Repair of Bone Tissue Defects. Bull Exp Biol Med 147, 147–155 (2009). https://doi.org/10.1007/s10517-009-0429-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-009-0429-y

Key Words

Navigation