Skip to main content
Log in

Involvement of Interstitial Structures of the Kidney into Hydrosmotic Effect of Vasopressin (Morphofunctional Study)

  • Physiology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Administration of desmopressin for 4 days to homozygous Brattleboro rats lacking endogenous vasopressin induced an increase in osmotic concentration and was accompanied by typical changes in the morphofunctional state of interstitial cells of the renal papilla. These changes increase the permeability of extracellular matrix, which attested to the involvement of interstitial cells into hydrosmotic reaction to vasopressin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Ivanova, Vestn. Ross. Akad. Med. Nauk., No. 3, 40–45 (1999).

  2. L. N. Ivanova, V. A. Lavrinenko, L. V. Shestopalova, and S. M. Korotkova, Byull. Eksp. Biol. Med., 143, No. 1, 101–106 (2007).

    Google Scholar 

  3. S. O. Bohman, J. Ultrastruct. Res., 47, No. 3, 329–360 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. L. Collis, C. Hall, L. Lange, et al., FEBS Lett., 440, No. 3, 444–449 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. P. S. Eggli and W. Graber, J. Histochem. Cytochem., 43, No. 7, 689–697 (1995).

    PubMed  CAS  Google Scholar 

  6. V. Goransson, P. Hansell, S. Moss, et al., Matrix Biol., 20, No. 2, 129–136 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. K. V. Lemley and W. Kriz, Kidney Int., 39, No. 3, 370–381 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. W. I. Lencer, D. Brown, D. A. Ausiello, and A. S. Verkman, Am. J. Physiol., 2596, C920–C932 (1990).

    Google Scholar 

  9. V. B. Lokeshuar, G. L. Schroeder, R. I. Carey, et al., J. Biol. Chem., 277, No. 37, 33,654–33,663 (2002).

    Article  Google Scholar 

  10. R. Lullmann-Rauch, Cell Tissue Res., 250, No. 3, 641–648 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. S. Nielsen, J. Frokiaer, D. Marples, et al. Physiol. Rev., 82, No. 1, 205–244 (2002).

    PubMed  CAS  Google Scholar 

  12. R. Stern, Devising a Pathway for Hyaluronan Catabolism: How the Goo Gets Cut (2003).

  13. G. Tamma, B. Wiesner, J. Furkert, et al., J. Cell Sci., 116, Pt. 16, 3285–3294 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. B. W. van Balkom, J. D. Hoffert, C. L. Chou, and M. A. Knepper, Am. J. Physiol. Renal Physiol., 286, No. 2, F216–F224 (2004).

    Article  Google Scholar 

  15. M. Zelenina, B. M. Christensen, J. Palmer, et al., Ibid., 278, No. 3, F388–F394 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lavrinenko.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Suppl. 1, pp. 8–12, 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestopalova, L.V., Lavrinenko, V.A., Shkurupiy, V.A. et al. Involvement of Interstitial Structures of the Kidney into Hydrosmotic Effect of Vasopressin (Morphofunctional Study). Bull Exp Biol Med 146, 682–686 (2008). https://doi.org/10.1007/s10517-009-0372-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-009-0372-y

Key Words

Navigation