Skip to main content

Advertisement

Log in

Electron probe microanalysis of cytoplasmic concentrations of elements in a single cell in culture and suspension

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Electron probe microanalysis is a method for evaluation of concentrations of elements at the subcellular level, effective in studies of an individual cell in culture or suspension. Intracellular concentrations of cytoplasmic ions (K+, Na+, Cl) most rapidly and markedly reacting to changes is an adequate criterion for evaluating the traumatism of manipulations used in cell technologies. Using electron probe microanalysis it will be possible to develop special procedures (for example, therapeutic cloning) for reprogramming or cryopreservation, when intactness of intracellular balance of element serves as the criterion of cell status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Gol’dsten, A. M. Aksirov, G. M. Kantor, et al., Biol. Membrany, 22, 321–325 (2005).

    Google Scholar 

  2. D. V. Gol’dsten, A. G. Pogorelov, T. A. Chailakhyan, and A. A. Smirnov, Byull. Eksp. Biol. Med., 138, No. 9, 275–276 (2004).

    Google Scholar 

  3. D. V. Gol’dsten, A. A. Rzhaninova, and A. G. Pogorelov, Ibid., 140, No. 9, 282–285 (2005).

    Google Scholar 

  4. D. V. Gol’dsten, E. I. Smol’yaninova, and A. G. Pogorelov, Ibid., 138, No. 7, 48–49 (2004).

    Google Scholar 

  5. A. G. Pogorelov and B. L. Allakhverdov, Tsitologiya, 24, 823–826 (1982).

    CAS  Google Scholar 

  6. A. G. Pogorelov, B. L. Allakhverdov, I. V. Burovina, and I. A. Kudinova, Cryogenic Methods in Electron Microscopy [in Russian], Pushchino (1977).

  7. A. G. Pogorelov, D. V. Gol’dsten, T. A. Chailakhyan, and A. A. Smirnov, Tsitologiya, 46, 934–935 (2004).

    Google Scholar 

  8. A. G. Pogorelov, Yu. M. Kokoz, M. I. Dubrovkin, et al., Ibid., 39, 829–834 (1997).

    CAS  Google Scholar 

  9. A. G. Pogorelov, V. N. Pogorelova, M. I. Dubrovkin, and I. P. Dyomin, Ibid., 42, 62–65 (2000).

    CAS  Google Scholar 

  10. A. G. Pogorelov, V. N. Pogorelova, M. I. Dubrovkin, et al., Biofizika, 47, 744–752 (2002).

    PubMed  CAS  Google Scholar 

  11. A. G. Pogorelov, V. N. Pogorelova, E. V. Khrenova, et al., Zh. Evolyuts. Biokhim. Fiziol., 40, 353–358 (2004).

    CAS  Google Scholar 

  12. A. G. Pogorelov, V. N. Pogorelova, E. V. Khrenova, et al., Surface. X-Ray, Synchronous, and Neutron Studies [in Russian], Vol. 2, 49–54 (2005).

    Google Scholar 

  13. A. G. Pogorelov, E. I. Smol’yaninova, D. V. Gol’dsten, and A. A. Smirnov, Tsitologiya, 46, 836–837 (2004).

    Google Scholar 

  14. A. G. Pogorelov, E. I. Smol’yaninova, V. N. Pogorelova, and D. V. Gol’dsten, Ontogenez, 36, 123–127 (2005).

    PubMed  CAS  Google Scholar 

  15. E. H. Abracham, J. Epstein, P. Chang-Sing, and C. Lechene, Am. J. Physiol., 248, C154–C164 (1985).

    Google Scholar 

  16. B. L. Allakhverdov, I. V. Burovina, N. M. Chmykhova, and A. I. Shapovalov, Neuroscience, 5, 2023–2031 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. T. C. Appleton, J. Stephen, and A. Warley, J. Physiol., 339, 45P–46P (1983).

    Google Scholar 

  18. J. M. Baltz, S. S. Smith, J. D. Biggers, and C. Lechene, Zygote, 5, 1–9 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. A. Bez, E. Corsini, D. Curti, et al., Brain Res., 993, 18–29 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. J. Boonstra, C. L. Mummery, E. J. J. van Zoelen, et al., Anticancer Res., 2, 265–274 (1982).

    PubMed  CAS  Google Scholar 

  21. L. M. Buja, H. K. Hagler, D. Parsone, et al., Lab. Invest., 53, 397–412 (1985).

    PubMed  CAS  Google Scholar 

  22. I. V. Burovina, F. G. Gribakin, A. M. Petrosyan, et al., J. Comp. Physiol., 127, 245–253 (1978).

    Article  CAS  Google Scholar 

  23. I. V. Burovina, N. B. Pivovarova, and A. G. Pogorelov, Gen. Physiol. Biophys., 4, 309–319 (1985).

    PubMed  CAS  Google Scholar 

  24. I. L. Cameron and N. K. R. Smith, Scan. Electron Microsc., 2, 463–474 (1980).

    Google Scholar 

  25. I. L. Cameron, N. K. R. Smith, T. B. Pool, and R. L. Sparks, Cancer Res., 40, 1493–1500 (1980).

    PubMed  CAS  Google Scholar 

  26. O. Ceder, G. M. Roomans, and P. Hosli, Scan. Electron. Microsc., 2, 723–730 (1982).

    Google Scholar 

  27. M. J. Costello and J. M. Corless, J. Microsc., 112, 17–37 (1978).

    PubMed  CAS  Google Scholar 

  28. R. F. E. Crang and K. L. Klomparens, Artifacts in Biological Electron Microscopy, New York, London (1988).

  29. G. P. Demsey and S. Bullivan, J. Microscopy, 106, 251–260 (1976).

    Google Scholar 

  30. A. Dorge, R. Rick, K. Gehring, and K. Thurau, Pflugers Arch., 373, 85–94 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. P. Echlin, Low-Temperature Microscopy and Analysis, New York (1992).

  32. H. Y. Elder, C. C. Gray, A. G. Iardine, et al., J. Microsc., 126, 45–61 (1981).

    Google Scholar 

  33. A. M. Glauert, Practical Methods in Electron Microscopy, Amsterdam, New York, Oxford (1977).

  34. D. Glick, Methods of Biochemical Analysis, New York, London, Sydney (1969).

  35. W. H. Goldmann, Cell Biol. Int., 27, 391–394 (2003).

    Article  CAS  Google Scholar 

  36. J. I. Goldstein, D. E. Newbury, P. Echlin, et al., Scanning Electron Microscopy and X-Ray Microanalysis, New York (1992).

  37. V. I. Govardovskij, B. L. Allakhverdov, I. V. Burovina, and Yu. V. Natochin, Folia Morphol., 24, 277–283 (1976).

    CAS  Google Scholar 

  38. B. L. Gupta, X-Ray Microanalysis in Biology: Experimental Techniques and Applications, Cambridge (1993).

  39. B. L. Gupta, T. A. Hall, and R. B. Moreton, Transport of Ions and Water in Animal, New York (1977).

  40. T. A. Hall, Physical Techniques in Biological Research, New York (1971).

  41. T. A. Hall and B. L. Gupta, Introduction to Analytical Electron Microscopy, New York (1979).

  42. F. Iren and A. van Spiegel, Science, 187, 1210–1211 (1975).

    PubMed  Google Scholar 

  43. M. R. James-Kracke, B. F. Sloane, H. Shuman, et al., J. Cell Physiol., 103, 313–322 (1980).

    Article  PubMed  CAS  Google Scholar 

  44. M. D. Kendall, A. Warley, and I. W. Morris, J. Microsc., 138, 35–42 (1985).

    Google Scholar 

  45. H. Komnick, Protoplasma, 14, 414–418 (1962).

    Article  Google Scholar 

  46. C. Lechene, An. NY Acad. Sci., 483, 793–800 (1986).

    Google Scholar 

  47. C. P. Lechene and R. R. Warner, Annu. Rev. Biophys. Bioeng., 6, 57–87 (1979).

    Article  Google Scholar 

  48. H. L. Leffert, An Overview: Ions, Cell Proliferation, and Cancer, New York (1982).

  49. A. LeFurgey, P. Ingram, and I. J. Mandel, J. Membr. Biol., 94, 191–196 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. H. Moor, G. Bellin, C. Sandri, and K. Akert, Cell Tissue Res., 209, 201–216 (1980).

    Article  PubMed  CAS  Google Scholar 

  51. J. T. Oster, Physical Techniques in Biological Research, New York (1971).

  52. G. N. Parkinson, M. P. H. Lee, and S. Neidle, Nature, 417, 876–880 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. A. Pogorelov, Micron Microsc. Acta, 18, 159–163 (1987).

    Article  CAS  Google Scholar 

  54. A. Pogorelov, EMAS News, 12, 6–7 (1993).

    Google Scholar 

  55. A. Pogorelov, B. Allachverdov, I. Burovina, et al., J. Microsc., 12, 24–38 (1991).

    Google Scholar 

  56. A. Pogorelov, Yu. Kokoz, M. Dubrovkin, and V. Pogorelova, J. R. Microsc. Soc., 31, 147 (1996).

    Google Scholar 

  57. A. Pogorelov, V. Pogorelova, N. Repin, and I. Mizin, Scan. Microsc., 8, 101–108 (1994).

    CAS  Google Scholar 

  58. A. Sobota, I. V. Burovina, A. G. Pogorelov, and A. A. Solus, Histochemistry, 81, 201–204 (1984).

    Article  PubMed  CAS  Google Scholar 

  59. A. Sobota, A. Pogorelov, I. Burovina, Cell Biol. Int. Rep., 5, 221–227 (1981).

    Article  PubMed  CAS  Google Scholar 

  60. W. E. Stumpf and L. J. Roth, J. Histochem. Cytochem., 13, 274–281 (1966).

    Google Scholar 

  61. S. Taurin, V. Seyrantepe, S. N. Orlov, et al., Circ. Res., 91, 915–922 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. K. E. Tvedt, J. Halgunset, G. Kopstad, and O. A. Haugen, J. Microsc., 151, 49–59 (1987).

    Google Scholar 

  63. K. E. Tvedt, G. Kopstad, and O. A. Haugen, Ibid., 133, 285–290 (1984).

    PubMed  CAS  Google Scholar 

  64. T. von Zglinicki and M. Bimmler, Mech. Ageing Dev., 38, 179–187 (1987).

    Article  Google Scholar 

  65. A. Warley, J. Microsc., 144, 183–191 (1986).

    PubMed  CAS  Google Scholar 

  66. A. Warley, Cell Tissue Res., 249, 215–220 (1987).

    Article  PubMed  CAS  Google Scholar 

  67. A. Warley, Scan. Microsc., 1, 1759–1770 (1987).

    CAS  Google Scholar 

  68. A. Warley, Electron Probe Microanalysis: Applications in Biology and Medicine, Berlin, Heidelberg, New York, London, Paris, Tokyo (1988).

  69. A. Warley, M. Kendall, and I. Morris, Science of Biological Specimen Preparation, Chicago (1986).

  70. A. Warley, J. Stephen, A. Hockaday, and T. C. Appleton, J. Cell. Sci., 60, 217–229 (1983).

    PubMed  CAS  Google Scholar 

  71. J. Wroblewski and L. Edstrom, Scan. Electron. Microsc., 1, 249–259 (1984).

    Google Scholar 

  72. J. Wroblewski and G. M. Roomans, Ibid., 4, 1875–1882.

  73. J. Wroblewski, G. M. Roomans, K. Madsen, and U. Freiberg, Ibid., 2, 777–784 (1983).

    Google Scholar 

  74. J. Wroblewski and R. Wroblewski, X-Ray Microanalysis in Biology: Experimental Techniques and Applications, Cambridge (1993).

  75. K. Zierold, Scan. Electron. Microsc., 2, 409–418 (1981).

    Google Scholar 

  76. I. Zs-Nagy, G. Lustyik, V. Zs-Nagy, and G. Balazs, Cancer Res., 43, 5395–5402 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kletochnye Tekhnologii v Biologii i Medicine, No. 2, pp. 84–91, April, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogorelov, A.G., Gol’dstein, D.V. Electron probe microanalysis of cytoplasmic concentrations of elements in a single cell in culture and suspension. Bull Exp Biol Med 141, 513–519 (2006). https://doi.org/10.1007/s10517-006-0211-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-006-0211-3

Key Words

Navigation