Skip to main content
Log in

An empirical characterization of ODE models of swarm behaviors in common foraging scenarios

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

There is a large class of real-world problems, such as warehouse transport, at different scales, swarm densities, etc., that can be characterized as Central Place Foraging Problems (CPFPs). We contribute to swarm engineering by designing an Ordinary Differential Equation (ODE) model that strives to capture the underlying behavioral dynamics of the CPFP in these application areas. Our simulation results show that a hybrid ODE modeling approach combining analytic parameter calculations and post-hoc (i.e., after running experiments) parameter fitting can be just as effective as a purely post-hoc approach to computing parameters via simulations, while requiring less tuning and iterative refinement. This makes it easier to design systems with provable bounds on behavior. Additionally, the resulting model parameters are more understandable because their values can be traced back to problem features, such as system size, robot control algorithm, etc. Finally, we perform real-robot experiments to further understand the limits of our model from an engineering standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Our is code open-source at https://github.com/jharwell/fordyca.

  2. Supplementary videos for both simulated and real-robot experiments can be found at https://www-users.cse.umn.edu/~harwe006/showcase/auro-2022-extra/.

References

  • Amsters, R., & Slaets, P., (2020). Turtlebot 3 as a robotics education platform. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., et al. (eds) Robotics in education. Springer International Publishing, pp 170–181

  • Berman, S., Halász, Á., Kumar, V., et al. (2007). Algorithms for the analysis and synthesis of a bio-inspired swarm robotic system. Swarm Robotics, vol LNCS 4433 (pp. 56–70). Berlin: Springer-Verlag.

    Google Scholar 

  • Castello, E., Yamamoto, T., & Nakamura, Y. et al. (2014). Foraging optimization in swarm robotic systems based on an adaptive response threshold model. In: Proceedings of the IEEE Int’l Conference on Robotics and Automation, pp 1343–1356

  • Castello, E., Yamamoto, T., Libera, F. D., et al. (2016). Adaptive foraging for simulated and real robotic swarms: the dynamical response threshold approach. Swarm Intelligence, 10(1), 1–31.

    Article  Google Scholar 

  • Codling, E., Plank, M., & Benhamou, S. (2008). Random walks in biology. Journal of the Royal Society, Interface/the Royal Society, 5, 813–34.

    Article  Google Scholar 

  • Codling, E. A., Bearon, R. N., & Thorn, G. J. (2010). Diffusion about the mean drift location in a biased random walk. Ecology, 91(10), 3106–3113.

    Article  Google Scholar 

  • Cotsaftis, M. (2009). An emergence principle for complex systems. Complex sciences (pp. 1105–1117). Heidelberg: Springer.

    Chapter  Google Scholar 

  • De Wolf, T., & Holvoet, T., et al. (2005). Emergence versus self-organisation: different concepts but promising when combined. In S. A. Brueckner, Serugendo G. Di Marzo, & A. Karageorgos (Eds.), Engineering self-organising systems (pp. 1–15). Berlin: Springer.

    Google Scholar 

  • Elamvazhuthi, K., & Berman, S. (2019). Mean-field models in swarm robotics: a survey. Bioinspiration and Biomimetics, 15(1), 015001

  • Ferrante E, Turgut AE, Duéñez-Guzmán E, et al. (2015). Evolution of self-organized task specialization in robot swarms. PLOS Computational Biology, 11(8)

  • Galstyan, A., Hogg, T., & Lerman, K. (2005). Modeling and mathematical analysis of swarms of microscopic robots. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pp. 201–208

  • Georgé, J. P., & Gleizes, M. P. (2005). Experiments in emergent programming using self-organizing multi-agent systems. Multi-Agent Systems and Applications IV, 3690, 450–459.

    Article  Google Scholar 

  • Ghosh, S.K., Cherstvy, A.G., & Grebenkov, D.S. et al. (2016). Anomalous, non-gaussian tracer diffusion in crowded two-dimensional environments. New Journal of Physics

  • Guerrero-Bonilla, L., Saldaña, D., & Kumar, V. (2020). Dense r-robust formations on lattices. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6633–6639

  • Hamann, H. (2013). Towards swarm calculus: urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence, 7, 145–172.

    Article  Google Scholar 

  • Harwell, J., & Gini, M. (2019). Swarm engineering through quantitative measurement of swarm robotic principles in a 10,000 robot swarm. In: Proceedings of the Twenty-Eighth Int’l Joint Conference on Artificial Intelligence, IJCAI-19, pp. 336–342

  • Harwell J, Lowmanstone L, Gini M (2020) Demystifying emergent intelligence and its effect on performance in large robot swarms. In: Proceedings of the Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 474–482

  • Hasnain, S., Harbola, U., & Bandyopadhyay, P. (2018). A memory-based random walk model to understand diffusion in crowded heterogeneous environment. International Journal of Modern Physics B, 32(16):1850193

  • Hecker, J. P., & Moses, M. E. (2015). Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9(1), 43–70.

    Google Scholar 

  • Hsieh, M. A., Halász, Á., Berman, S., et al. (2008). Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence, 2(2), 121–141.

    Article  Google Scholar 

  • Hunt, E. R. (2020). Phenotypic plasticity provides a bioinspiration framework for minimal field swarm robotics. Frontiers in Robotics and AI, 7, 23.

    Article  Google Scholar 

  • Ijspeert, A. J., Martinoli, A., Billard, A., et al. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.

    Article  MATH  Google Scholar 

  • Kampen, N. V. (2007). Stochastic processes in physics and chemistry. North Holland.

    MATH  Google Scholar 

  • Klavins, E. (2010). Proportional-integral control of stochastic gene regulatory networks. In: 49th IEEE Conference on Decision and Control (CDC), pp. 2547–2553

  • Krishnarajah, I., Cook, A., Marion, G., et al. (2005). Novel moment closure approximations in stochastic epidemics. Bulletin of Mathematical Biology, 67(4), 855–873.

    Article  MathSciNet  MATH  Google Scholar 

  • Labella, T. H., & Dorigo, M. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Trans on Autonomous and Adaptive Systems (TAAS), 1(1), 4–25.

    Article  Google Scholar 

  • Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13(2), 127–141.

    Article  MATH  Google Scholar 

  • Lerman, K., & Galstyan, A. (2003). Macroscopic analysis of adaptive task allocation in robots. In: Proceedings of the 2003 IEEE/RSJ Int’l Conference on Intelligent Robots and Systems (IROS 2003), pp. 1951–1956

  • Lerman, K., Galstyan, A., Martinoli, A., et al. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7(4), 375–393.

    Article  Google Scholar 

  • Lerman, K., Jones, C., Galstyan, A., et al. (2006). Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Research, 25(3), 225–241.

    Article  Google Scholar 

  • Lu, Q., Fricke, G., Ericksen, J., et al. (2020). Swarm foraging review: Closing the gap between proof and practice. Curr Robot Reports, 1, 215–225.

    Article  Google Scholar 

  • Mather, T. W., Hsieh, M. A. (2012). Ensemble modeling and control for congestion management in automated warehouses. In: 2012 IEEE Int’l Conference on Automation Science and Engineering (CASE), pp. 390–395

  • Mather, T. W., Braun, C., & Hsieh, M. A., et al. (2013). Distributed filtering for time-delayed deployment to multiple sites. In A. Martinoli, F. Mondada, & N. Correll (Eds.), The 10th International Symposium Distributed Autonomous Robotic Systems (pp. 299–312). Berlin: Springer.

  • Matthey, L., Berman, S., & Kumar, V. (2009). Stochastic strategies for a swarm robotic assembly system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1953–1958

  • Metzler, R., Jeon, J. H., & Cherstvy, A. G., et al. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Physical Chemistry Chemical Physics, 16, 24128–24164

  • Nicolau, D. V., Jr., Hancock, J. F., & Burrage, K. (2007). Sources of anomalous diffusion on cell membranes: A Monte Carlo study. Biophysical Journal, 92(6), 1975–1987.

    Article  Google Scholar 

  • Oliveira, F. A., Ferreira, R. M. S., & Lapas, L. C., et al. (2019). Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous systems. Frontier Physics

  • Pang, B., Song, Y., & Zhang, C., et al. (2019). A swarm robotic exploration strategy based on an improved random walk method. Journal of Robotics, 2019

  • Pinciroli, C., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6, 271–295.

    Article  Google Scholar 

  • Pini, G., Brutschy, A., Frison, M., et al. (2011). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.

    Article  Google Scholar 

  • Ramachandran, R. K., Fronda, N., & Sukhatme, G. S. (2020). Resilience in multi-robot target tracking through reconfiguration. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp 4551–4557

  • Renshaw, E., & Henderson, R. (1981). The correlated random walk. Journal of Applied Probability, 18(2), 403–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In: Swarm Robotics. Springer, LNCS 3342, pp 10–20

  • Santamaria-Holek, I., & Vainstein, M. (2009). Protein motors induced enhanced diffusion in intracellular transport. Physica A: Statistical Mechanics and its Applications, 388(8), 1515–1520.

    Article  Google Scholar 

  • Šeda, M., Šedová, J., & Horký, M. (2017). Models and simulations of queueing systems. In: Matoušek, R. (ed) Recent Advances in Soft Computing. Proceedings of the 22nd international conference on soft computing (MENDEL 2016), vol. 576. Springer

  • Sugawara, K., & Sano, M. (1997). Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Physica D: Nonlinear Phenomena, 100(3–4), 343–354.

    Article  MATH  Google Scholar 

  • Talamali, M. S., Bose, T., Haire, M., et al. (2020). Sophisticated collective foraging with minimalist agents: A swarm robotics test. Swarm Intelligence, 14(1), 25–56.

    Article  Google Scholar 

  • Tarapore, D., Christensen, A. L., & Timmis, J. (2017). Generic, scalable and decentralized fault detection for robot swarms. PLOS One, 12(8), 1–29.

    Article  Google Scholar 

  • Tarapore, D., Gross, R., & Zauner, K. P. (2020). Sparse robot swarms: Moving swarms to real-world applications. Frontiers in Robotics and AI, 7, 83.

    Article  Google Scholar 

  • Vlahos, L., Isliker, H., & Kominis, Y., et al. (2008). Normal and anomalous diffusion: A tutorial. arXiv:0805.0419 [nlin.CD]

  • Weiss, M., Hashimoto, H., & Nilsson, T. (2003). Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophysical Journal, 84(6), 4043–4052.

    Article  Google Scholar 

  • Woringer, M., Izeddin, I., Favard, C., et al. (2020). Anomalous subdiffusion in living cells: Bridging the gap between experiments and realistic models through collaborative challenges. Frontiers in Physics, 8, 134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harwell.

Ethics declarations

Conflict of interest

Partial financial support for this work was provided by the MnDRIVE initiative, the Minnesota Robotics Institute, and the University of Minnesota Informatics Institute. The Minnesota Supercomputing Institute provided computing resources. No other competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harwell, J., Sylvester, A. & Gini, M. An empirical characterization of ODE models of swarm behaviors in common foraging scenarios. Auton Robot 47, 963–977 (2023). https://doi.org/10.1007/s10514-023-10121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-023-10121-9

Keywords

Navigation