Skip to main content
Log in

Cooperative estimation and control of a diffusion-based spatiotemporal process using mobile sensors and actuators

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Monitoring and controlling a large-scale spatiotemporal process can be costly and dangerous for human operators, which can delegate the task to mobile robots for improved efficiency at a lower cost. The complex evolution of the spatiotemporal process and limited onboard resources of the robots motivate a holistic design of the robots’ actions to complete the tasks efficiently. This paper describes a cooperative framework for estimating and controlling a spatiotemporal process using a team of mobile robots that have limited onboard resources. We model the spatiotemporal process as a 2D diffusion equation that can characterize the intrinsic dynamics of the process with a partial differential equation (PDE). Measurement and actuation of the diffusion process are performed by mobile robots carrying sensors and actuators. The core of the framework is a nonlinear optimization problem, that simultaneously seeks the actuation and guidance of the robots to control the spatiotemporal process subject to the PDE dynamics. The limited onboard resources are formulated as inequality constraints on the actuation and speed of the robots. Extensive numerical studies analyze and evaluate the proposed framework using nondimensionalization and compare the optimal strategy to baseline strategies. The framework is demonstrated on an outdoor multi-quadrotor testbed using hardware-in-the-loop simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

not applicable.

References

  • Aish, A., Ashworth, J., Barrio-Frojan, B., Benjamins, S., Bolam, S., Brazier, P., Brockington, S., Chaniotis, P., Clements, A., & Coggan, R., et al. (2010). Marine habitats. In UK Marine Monitoring and Assessment Strategy (2010) Charting Progress 2 Healthy and Biological Diverse Seas Feeder Report (pp. 68–271). Department for Environment Food and Rural Affairs.

  • Bar-Shalom, Y., Rong Li, X., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. Wiley.

    Book  Google Scholar 

  • Bensoussan, A. (1971). Filtrage optimal des systèmes linéaires. Dunod.

    MATH  Google Scholar 

  • Bensoussan, A. (1972). Optimization of sensors’ location in a distributed filtering problem. In Stability of stochastic dynamical systems (pp. 62–84). Springer.

  • Bensoussan, A., Da Prato, G., Delfour, M. C., & Mitter, S. K. (1992). Representation and control of infinite dimensional systems (Vol. 1). Birkhäuser.

    MATH  Google Scholar 

  • Buckingham, E. (1914). On physically similar systems; Iillustrations of the use of dimensional equations. Physical Review, 4(4), 345.

    Article  Google Scholar 

  • Bullo, F., Cortés, J., & Martínez, S. (2009). Distributed control of robotic networks. Applied mathematics series. Princeton University Press.

    Book  MATH  Google Scholar 

  • Burns, J. A., & Rautenberg, C. N. (2015). Solutions and approximations to the riccati integral equation with values in a space of compact operators. SIAM Journal on Control and Optimization, 53(5), 2846–2877.

    Article  MathSciNet  MATH  Google Scholar 

  • Calkins, L., Khodayi-mehr, R., Aquino, W., & Zavlanos, M. M. (2020). Sensor planning for model-based acoustic source identification. In Proceedings of American Control Conference (pp. 2679–2684)

  • Cheng, S., & Paley, D. A. (2021). Optimal control of a 2D diffusion-advection process with a team of mobile actuators under jointly optimal guidance. Automatica, 133, 109866.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, S., & Paley, D. A. (2021). Optimal guidance of a team of mobile actuators for controlling a 1D diffusion process with unknown initial conditions. In Proceedings of American Control Conference (pp. 1493–1498).

  • Cheng, S., & Paley, D. A. (2022). Optimal guidance and estimation of a 2D diffusion-advection process by a team of mobile sensors. Automatica, 137, 110112.

    Article  MathSciNet  MATH  Google Scholar 

  • Curtain, R. F., & Zwart, H. (2012). An introduction to infinite-dimensional linear systems theory (Vol. 21). Springer.

    MATH  Google Scholar 

  • Demetriou, M. A. (2010). Guidance of mobile actuator-plus-sensor networks for improved control and estimation of distributed parameter systems. IEEE Transactions on Automatic Control, 55(7), 1570–1584.

    Article  MathSciNet  MATH  Google Scholar 

  • Demetriou, M. A. (2012). Adaptive control of 2-D PDEs using mobile collocated actuator/sensor pairs with augmented vehicle dynamics. IEEE Transactions on Automatic Control, 57(12), 2979–2993.

    Article  MathSciNet  MATH  Google Scholar 

  • Demetriou, M. A. (2016). Domain decomposition methods in the distributed estimation of spatially distributed processes with mobile sensors. In Proceedings of American Control Conference (pp. 1649–1654).

  • Demetriou, M. A. (2016). Gain adaptation and sensor guidance of diffusion PDEs using on-line approximation of optimal feedback kernels. In Proceedings of 2016 American Control Conference (pp. 2536–2541).

  • Demetriou, M. A. (2018a). Closed-loop guidance of mobile sensors for the estimation of spatially distributed processes. In Proceedings of American Control Conference (pp. 931–936).

  • Demetriou, M. A. (2018b). Incorporating impact of hazardous and toxic environments on the guidance of mobile sensor networks used for the cooperative estimation of spatially distributed processes. In Proceedings of IEEE 57th Conference Decision and Control (pp. 1317–1322).

  • Demetriou, M. A., & Gatsonis, N. A. (2009). Scheduling of static sensor networks and management of mobile sensor networks for the detection and containment of moving sources in spatially distributed processes. In Proceedings of Mediterranean Conference Control and Automation (pp. 187–192).

  • Demetriou, M. A., Gatsonis, N. A., & Court, J. R. (2011a). Lyapunov based guidance of a mobile sensing agent for state estimation of a gaseous source in a 3D spatial domain. In Proceedings of IEEE Conference Decision and Control (pp. 1986–1992).

  • Demetriou, M. A., Gatsonis, N. A., & Court, J. R. (2011b). Model-based detection of a moving gaseous source in a 2D spatial domain using a sensor-based grid adaptation approach. In Proceedings of American Control Conference, (pp. 2374–2380).

  • Demetriou, M. A., & Hussein, I. I. (2009). Estimation of spatially distributed processes using mobile spatially distributed sensor network. SIAM Journal on Control and Optimization, 48(1), 266–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubljevic, S., Kobilarov, M., & Ng, J. (2010). Discrete mechanics optimal control (DMOC) and model predictive control (MPC) synthesis for reaction-diffusion process system with moving actuator. In Proceedings of American Control Conference (pp. 5694–5701).

  • Emirsjlow, Z., & Townley, S. (2000). From PDEs with boundary control to the abstract state equation with an unbounded input operator: A tutorial. European Journal of Control, 6(1), 27–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Honig, W., Preiss, J. A., Satish Kumar, T. K., Sukhatme, G. S., & Ayanian, N. (2018). Trajectory planning for quadrotor swarms. IEEE Transactions on Robotics, 34(4), 856–869.

    Article  Google Scholar 

  • Imsland, L. (2017). Partially distributed optimization for mobile sensor path-planning. In Proceedings of IEEE 56th Conference Decision and Control (pp. 3101–3106).

  • Khodayi-Mehr, R., Aquino, W., & Zavlanos, M. M. (2019). Model-based active source identification in complex environments. IEEE Transactions on Robotics, 35(3), 633–652.

    Article  Google Scholar 

  • Li, S., Guo, Y., & Bingham, B. (2014). Multi-robot cooperative control for monitoring and tracking dynamic plumes. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 67–73). IEEE.

  • Luis, C. E., & Schoellig, A. P. (2019). Trajectory generation for multiagent point-to-point transitions via distributed model predictive control. IEEE Robotics and Automation Letters, 4(2), 375–382.

    Article  Google Scholar 

  • Lytridis, C., Kadar, E. E., & Virk, G. S. (2006). A systematic approach to the problem of odour source localisation. Autonomous Robots, 20(3), 261–276.

    Article  Google Scholar 

  • Marjovi, A., & Marques, L. (2013). Optimal spatial formation of swarm robotic gas sensors in odor plume finding. Autonomous Robots, 35(2), 93–109.

    Article  Google Scholar 

  • Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). The GRASP multiple micro-UAV testbed. IEEE Robotics Automation Magazine, 17(3), 56–65.

    Article  Google Scholar 

  • Morris, K. (2010). Linear-quadratic optimal actuator location. IEEE Transactions on Automatic Control, 56(1), 113–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Morris, K. A. (2020). Controller design for distributed parameter systems. Springer.

    Book  MATH  Google Scholar 

  • Nie, Y., Faqir, O., & Kerrigan, E. C. (2018). ICLOCS2: Try this optimal control problem solver before you try the rest. In Proceedings of UKACC International Conference Control (pp. 336–336). IEEE.

  • Oh, K. K., Park, M. C., & Ahn, H. S. (2015). A survey of multi-agent formation control. Automatica, 53, 424–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Reymann, C., Renzaglia, A., Lamraoui, F., Bronz, M., & Lacroix, S. (2018). Adaptive sampling of cumulus clouds with UAVs. Autonomous Robots, 42(2), 491–512.

    Article  Google Scholar 

  • Saak, J., & Benner, P. (2004). Efficient numerical solution of the LQR-problem for the heat equation. PAMM: Proceedings in Applied Mathematics and Mechanics, 4(1), 648–649.

    Article  MATH  Google Scholar 

  • Saldana, D., Assunçao, R., Hsieh, M. A., Campos, M. F. M., & Kumar, V. (2021). Estimating boundary dynamics using robotic sensor networks with pointwise measurements. Autonomous Robots, 45(2), 193–208.

    Article  Google Scholar 

  • Schranz, M., Umlauft, M., Sende, M., & Elmenreich, W. (2020). Swarm robotic behaviors and current applications. Frontiers in Robotics and AI, 7, 36.

    Article  Google Scholar 

  • Schroeder, A. M. (2018). Mitigating harmful algal blooms using a robot swarm. PhD thesis.

  • Smyshlyaev, A., & Krstic, M. (2010). Adaptive control of parabolic PDEs. Princeton University Press.

    Book  MATH  Google Scholar 

  • Stachniss, C., Plagemann, C., & Lilienthal, A. J. (2009). Learning gas distribution models using sparse Gaussian process mixtures. Autonomous Robots, 26(2), 187–202.

    Article  Google Scholar 

  • Sydney, N., & Paley, D. A. (2014). Multivehicle coverage control for a nonstationary spatiotemporal field. Automatica, 50(5), 1381–1390.

    Article  MathSciNet  MATH  Google Scholar 

  • Ucinski, D. (2004). Optimal measurement methods for distributed parameter system identification. CRC Press.

    Book  MATH  Google Scholar 

  • Vayena, O., Doumanidis, H., & Demetriou, M. A. (2000). An LQR-based optimal actuator guidance in thermal processing of materials. In Proceedings of American Control Conference, volume 4 (pp. 2300–2304).

  • Wang, J. W., Guo, Y., Fahad, M., & Bingham, B. (2019). Dynamic plume tracking by cooperative robots. IEEE/ASME Transactions on Mechatronics, 24(2), 609–620.

    Article  Google Scholar 

  • Wiedemann, T., Shutin, D., & Lilienthal, A. J. (2019). Model-based gas source localization strategy for a cooperative multi-robot system-a probabilistic approach and experimental validation incorporating physical knowledge and model uncertainties. Robotics and Autonomous Systems, 118, 66–79.

    Article  Google Scholar 

  • Wolek, A., Cheng, S., Goswami, D., & Paley, D. A. (2020). Cooperative mapping and target search over an unknown occupancy graph using mutual information. IEEE Robotics and Automation Letters, 5(2), 1071–1078.

    Article  Google Scholar 

  • Yunfei, X., Choi, J., & Songhwai, O. (2011). Mobile sensor network navigation using Gaussian processes with truncated observations. IEEE Transactions on Robotics, 27(6), 1118–1131.

    Article  Google Scholar 

  • Huili, Yu., Meier, K., Argyle, M., & Beard, R. W. (2015). Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles. IEEE/ASME Transactions on Mechatronics, 20(2), 541–552.

    Article  Google Scholar 

  • Zhang, M., & Morris, K. (2018). Sensor choice for minimum error variance estimation. IEEE Transactions on Automatic Control, 63(2), 315–330.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by a seed grant from Northrop Grumman.

Author information

Authors and Affiliations

Authors

Contributions

Sheng Cheng has contributed to the literature review, problem formulation, numerical studies, experimental studies, and manuscript writing. Derek A. Paley has provided guidance and instructions for the research and revision suggestions to the manuscript.

Corresponding author

Correspondence to Sheng Cheng.

Ethics declarations

Ethical approval

not applicable

Competing interests:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 816 KB)

Appendix

Appendix

For the operator \(\mathcal {A}\) in the original abstract system (13), in the case of diffusion process (3), for \(\phi \in \mathcal {H}\), \((\mathcal {A} \phi ) (x,y) = a \nabla ^2 \phi (x,y)\), where the operator \(\mathcal {A}\) has domain \(\text {Dom}(\mathcal {A}) = H^2(\Omega ) \cap H_0^1(\Omega ) \) (Cheng and Paley, 2021).

For the finite-dimensional approximation of the infinite-dimensional system (13)–(15), the inner product and norm of the finite-dimensional state space \(\mathcal {H}_N\) are inherited from that of \(\mathcal {H}\). Let \(P_N: \mathcal {H} \rightarrow \mathcal {H}_N\) denote the orthogonal projection of \(\mathcal {H}\) onto \(\mathcal {H}_N\). We use the Galerkin scheme with the \(\mathcal {H}_N\) spanned by \(N^2\) eigenfunctions \(\phi _{ij}(x,y) = 2 \sin (\pi i x/l)\sin (\pi j y/l)/l\) of the Laplacian operator \(\nabla ^2\) with Dirichlet BC for \(i,j \in \{1,2,\ldots ,N \}\) (Burns and Rautenberg, 2015). For Neumann BC, the eigenfunctions for approximation are \(\psi _{i,j} (x,y) = 2 \cos (\pi i x / l) \cos (\pi j y/l)/l\) for \(i,j \in \{0,1,\ldots , N-1\}\) (Burns and Rautenberg, 2015). Both eigenfunctions are orthonormal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Paley, D.A. Cooperative estimation and control of a diffusion-based spatiotemporal process using mobile sensors and actuators. Auton Robot 47, 715–731 (2023). https://doi.org/10.1007/s10514-023-10105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-023-10105-9

Keywords

Navigation