Skip to main content
Log in

Accomplishing high-level tasks with modular robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The advantage of modular self-reconfigurable robot systems is their flexibility, but this advantage can only be realized if appropriate configurations (shapes) and behaviors (controlling programs) can be selected for a given task. In this paper, we present an integrated system for addressing high-level tasks with modular robots, and demonstrate that it is capable of accomplishing challenging, multi-part tasks in hardware experiments. The system consists of four tightly integrated components: (1) a high-level mission planner, (2) a large design library spanning a wide set of functionality, (3) a design and simulation tool for populating the library with new configurations and behaviors, and (4) modular robot hardware. This paper builds on earlier work by Jing et al. (in: Robotics: science and systems, 2016), extending the original system to include environmentally adaptive parametric behaviors, which integrate motion planners and feedback controllers with the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Video is also available online: https://youtu.be/0rtXv4Z1E-o.

References

  • Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. (2007). Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robotics Automation Magazine, 14(1), 61–70.

    Article  Google Scholar 

  • Bhatia, A., Kavraki, L. E., & Vardi, M. Y. (2010). Sampling-based motion planning with temporal goals. In 2010 IEEE international conference on robotics and automation (ICRA) (pp. 2689–2696). IEEE.

  • Castro, S., Koehler, S., & Kress-Gazit, H. (2011). High-level control of modular robots. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3120–3125). IEEE.

  • Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., & Campbell, M. (2017). An integrated system for perception-driven autonomy with modular robots (in preparation). arXiv preprint available arXiv:1709.05435.

  • Davey, J., Kwok, N., & Yim, M. (2012). Emulating self-reconfigurable robots-design of the SMORES system. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4464–4469). IEEE.

  • Finucane, C., Jing, G., & Kress-Gazit, H. (2010). LTLMoP: Experimenting with language, temporal logic and robot control. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1988–1993).

  • Fukuda, T., & Kawauchi, Y. (1990). Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In ICRA.

  • Hornby, G. S., Lipson, H., & Pollack, J. B. (2003). Generative representations for the automated design of modular physical robots. IEEE Transcations on Robotics and Automation, 19(4), 703–719.

    Article  Google Scholar 

  • Jing, G., Tosun, T., Yim, M., & Kress-Gazit, H. (2016). An end-to-end system for accomplishing tasks with modular robots. In Robotics: Science and systems. http://www.tariktosun.com/wp-content/uploads/jing2016system.pdf

  • Kloetzer, M., & Belta, C. (2008). A fully automated framework for control of linear systems from temporal logic specifications. IEEE Transactions on Automatic Control, 53(1), 287–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Kress-Gazit, H., Fainekos, G. E., & Pappas, G. J. (2009). Temporal logic based reactive mission and motion planning. IEEE Transactions on Robotics, 25(6), 1370–1381.

    Article  Google Scholar 

  • Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., et al. (2016). Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 40(3), 429–455.

    Article  Google Scholar 

  • Kurokawa, H., et al. (2008). Distributed self-reconfiguration of M-TRAN III modular robotic system. The International Journal of Robotics Research, 27(3–4), 373–386.

    Article  Google Scholar 

  • Lipson, H., & Pollack, J. B. (2000). Towards continuously reconfigurable self-designing robotics. In ICRA.

  • Mantzouratos, Y., Tosun, T., Khanna, S., & Yim, M. (2015). On embeddability of modular robot designs. In IEEE international conference on robotics and automation.

  • Mehta, A., Bezzo, N., An, B., Gebhard, P., Kumar, V., Lee, I., & Rus, D. (2014a). A design environment for the rapid specification and fabrication of printable robots. In 14th International symposium on experimental robotics (ISER14), Marrakech/Essaouira, Morocco (pp. 15–18).

  • Mehta, A. M., DelPreto, J., Shaya, B., & Rus, D. (2014b). Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In Intelligent robots and systems (IROS 2014) (pp. 2892–2897). IEEE.

  • Murata, S., Kakomura, K., & Kurokawa, H. (2006). Docking experiments of a modular robot by visual feedback. In IEEE international conference on intelligent robots and systems (pp. 625–630).

  • Olson, E. (2011). Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 3400–3407). IEEE.

  • Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the atron lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183.

    Article  Google Scholar 

  • Raman, V., Donzé, A., Sadigh, D., Murray, R. M., & Seshia, S. A. (2015). Reactive synthesis from signal temporal logic specifications. In Proceedings of the 18th international conference on hybrid systems: Computation and control, HSCC ’15, New York, NY, USA (pp. 239–248).

  • Rubenstein, M., Payne, K., Will, P., & Shen, W. M. S. W. M. (2004). Docking among independent and autonomous CONRO self-reconfigurable robots. In IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04. 2004 (Vol. 3, pp. 2877–2882).

  • Salemi, B., Shen, W. M., & Will, P. (2001). Hormone-controlled metamorphic robots. In ICRA.

  • Schulz, A., Sung, C., Spielberg, A., Zhao, W., Cheng, Y., Mehta, A., Grinspun, E., Rus, D., & Matusik, W. (2015). Interactive robogami: Data-driven design for 3d print and fold robots with ground locomotion. In SIGGRAPH 2015: Studio (p. 1). ACM.

  • Sproewitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move in modular robots using central pattern generators and online optimization. The International Journal of Robotics Research, 27(3–4), 423–443.

    Article  Google Scholar 

  • Stoy, K., Shen, W. M., & Will, P. M. (2002). Using role-based control to produce locomotion in chain-type self-reconfigurable robots. IEEE/ASME Transactions on Mechatronics, 7(4), 410–417.

    Article  Google Scholar 

  • Sung, C., Bern, J., Romanishin, J., & Rus, D. (2015). Reconfiguration planning for pivoting cube modular robots. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 1933–1940). IEEE.

  • Sung, J., Jin, S. H., Lenz, I., & Saxena, A. (2016). Robobarista: Learning to manipulate novel objects via deep multimodal embedding. arXiv preprint arXiv:1601.02705.

  • Tosun, T., Davey, J., Liu, C., & Yim, M. (2016). Design and characterization of the ep-face connector. https://doi.org/10.1109/IROS.2016.7759033.

  • Tosun, T., Edgar, D., Liu, C., Tsabedze, T., & Yim, M. (2017). Paintpots: Low cost, accurate, highly customizable potentiometers for position sensing. In IEEE International Conference on Robotics and Automation (pp. 1212–1218). http://www.tariktosun.com/wp-content/uploads/tosun2017paintpots.pdf.

  • Tosun, T., Jing, G., Kress-Gazit, H., & Yim, M. (2015). Computer-aided compositional design and verification for modular robots. In International symposium on robotics research.

  • Unity3d. http://unity3d.com/. Accessed 20 Apr 2018.

  • Walter, J. E., Tsai, E. M., & Amato, N. M. (2002). Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots. In ICRA.

  • Wongpiromsarn, T., Topcu, U., & Murray, R. M. (2010). Receding horizon control for temporal logic specifications. In Proceedings of the 13th ACM international conference on hybrid systems: Computation and control, HSCC ’10, New York, NY, USA (pp. 101–110).

  • Yim, M. (1994). Locomotion with a unit-modular reconfigurable robot. Ph.D. thesis, Stanford University.

  • Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007a). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 43–52.

    Article  Google Scholar 

  • Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., & Taylor, C. J. (2007b). Towards robotic self-reassembly after explosion. In International conference on intelligent robots and systems, 2007 (pp. 2767–2772). IEEE.

  • Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., & Taylor, C. J. (2007c). Towards robotic self-reassembly after explosion. In IROS.

  • Zhang, Y., et al. (2003). Phase automata: A programming model of locomotion gaits for scalable chain-type modular robots. In IROS.

Download references

Acknowledgements

This work was funded by NSF Grant Nos. CNS-1329620 and CNS-1329692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Tosun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Robotics Science and Systems”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 47803 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, G., Tosun, T., Yim, M. et al. Accomplishing high-level tasks with modular robots. Auton Robot 42, 1337–1354 (2018). https://doi.org/10.1007/s10514-018-9738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9738-1

Keywords

Navigation