Skip to main content
Log in

Ceiling vision-based active SLAM framework for dynamic and wide-open environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A typical indoor environment can be divided into three categories; office (or room), hallway, and wide-open space such as lobby and hall. There have been numerous approaches for solving simultaneous localization and mapping (SLAM) problem in office (or room) and hallway. However, direct application of the existing approaches to wide-open space may be failed, because it has some distinguished features compared to other indoor places. To solve this problem, this paper proposes a new ceiling vision-based active SLAM framework, with an emphasis on practical deployment of service robot for commercial use in dynamically changing and wide-open environments by adopting the ceiling vision. First, for defining ceiling feature which can be extracted regardless of complexity of ceiling pattern we introduce a model-free landmark, i.e., visual node descriptor, which consists of edge points and their orientations in image space. Second, a recursive ‘explore and exploit’ is proposed for autonomous mapping. It is recursively performed by spreading out mapped area gradually while the robot is actively localized in the map. It can improve map accuracy due to frequent small loop closing. Third, a dynamic edge link (DEL) is proposed to cope with environmental changes in the map. Owing to DEL, we do not need to filter out corrupted sensor data and to distinguish moving object from static one. Also, a self-repairing map mechanism is introduced to deal with unexpected installation or removal of inner structures. We therefore achieve long-term navigation. Several simulations and real experiments in various places show that the proposed active SLAM framework could build a topologically consistent map, and demonstrated that it can be applied well to real environments such as wide-open space in a city hall and railway station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  • Albrecht, S. (2009). An analysis of VISUAL MONO-SLAM. Master Thesis.

  • An, S.-Y., Kang, J.-G., Lee, L.-K., & Oh, S.-Y. (2012). Line segment-based indoor mapping with salient line feature extraction. Advanced Robotics, 26(5–6), 437–460.

    Article  Google Scholar 

  • An, S.-Y., Lee, L.-K., & Oh, S.-Y. (2013). Ceiling vision-based topological mapping and exploration in wide-open area. In RO-MAN, 2013 IEEE, 2013 (pp. 1–6)

  • Ayoung, K., & Eustice, R. M. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733. doi:10.1109/TRO.2012.2235699.

    Article  Google Scholar 

  • Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006). Consistency of the EKF-SLAM algorithm. In 2006 IEEE/RSJ International Conference on intelligent robots and systems (pp. 3562–3568).

  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In Computer vision–ECCV 2006 (pp. 404–417). New York: Springer.

  • Breu, H., Gil, J., Kirkpatrick, D., & Werman, M. (1995). Linear time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5), 529–533.

    Article  Google Scholar 

  • Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kummerle, R., Dornhege, C., et al. (2009). A comparison of SLAM algorithms based on a graph of relations. In IEEE/RSJ International Conference on intelligent robots and systems, 2009. IROS 2009 (pp. 2089–2095). St. Louis, MO : IEEE.

  • Callmer, J., Granström, K., Nieto, J., & Ramos, F. (2008). Tree of words for visual loop closure detection in urban SLAM. In Proceedings of the 2008 Australasian conference on robotics and automation (pp. 8).

  • Choi, J., Ahn, S., Choi, M., & Chung, W. K. (2006). Metric SLAM in home environment with visual objects and sonar features. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 4048-4053). San Diego: IEEE.

  • Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

    Article  Google Scholar 

  • Delaunay, B. (1934). Sur la sphère vide. Bulletin of the Academy of Sciences of the USSR, 7, 793–800.

    Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Diosi, A., & Kleeman, L. (2005). Laser scan matching in polar coordinates with application to SLAM. In 2005 IEEE/RSJ international conference on intelligent robots and systems. (IROS 2005) (pp. 3317–3322). Edmonton, AB: IEEE.

  • Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.

    Article  Google Scholar 

  • Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellised particle filtering for dynamic Bayesian networks. In Proceedings of the sixteenth conference on uncertainty in artificial intelligence (pp. 176–183). San Francisco: Morgan Kaufmann Publishers Inc.

  • Estrada, C., Neira, J., & Tardós, J. D. (2005). Hierarchical SLAM: Real-time accurate mapping of large environments. IEEE Transactions on Robotics, 21(4), 588–596.

    Article  Google Scholar 

  • Gaspar, J., Winters, N., & Santos-Victor, J. (2000). Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 16(6), 890–898.

    Article  Google Scholar 

  • Grisettiyz, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 2432–2437). Barcelona: IEEE.

  • Guivant, J. E., & Nebot, E. M. (2001). Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 17(3), 242–257.

    Article  Google Scholar 

  • Hahnel, D., Triebel, R., Burgard, W., & Thrun, S. (2003). Map building with mobile robots in dynamic environments. In IEEE international conference on robotics and automation, 2003. Proceedings. ICRA’03 (Vol. 2, pp. 1557–1563)

  • Holz, D., Basilico, N., Amigoni, F., & Behnke, S. (2010). Evaluating the efficiency of frontier-based exploration strategies. In Robotics (ISR), 2010 41st international symposium on and 2010 6th German conference on robotics (ROBOTIK), 7–9 June 2010 2010 (pp. 1–8)

  • Hwang, S.-Y., & Song, J.-B. (2008). Stable monocular SLAM with indistinguishable features on estimated ceiling plane using upward camera. In International conference on control, automation and systems, 2008. ICCAS 2008 (pp. 704–709).

  • Hwang, S.-Y., & Song, J.-B. (2011). Monocular vision-based SLAM in indoor environment using corner, lamp, and door features from upward-looking camera. IEEE Transactions on Industrial Electronics, 58(10), 4804–4812.

    Article  Google Scholar 

  • Jeong, W., & Lee, K. M. (2005). CV-SLAM: A new ceiling vision-based SLAM technique. In 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005.(IROS 2005) (pp. 3195–3200).

  • Jeong, W. Y., & Lee, K. M. (2006). Visual SLAM with line and corner features. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 2570–2575).

  • Julier, S. J., & Uhlmann, J. K. (2007). Using covariance intersection for SLAM. Robotics and Autonomous Systems, 55(1), 3–20.

    Article  Google Scholar 

  • Kang, J.-G., An, S.-Y., & Oh, S.-Y. (2007). Navigation strategy for the service robot in the elevator environment. In International conference on control, automation and systems, 2007. ICCAS’07 (pp. 1092–1097).

  • Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P., & Munich, M. E. (2005). The vSLAM algorithm for robust localization and mapping. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 24–29).

  • Kim, J., & Sukkarieh, S. (2007). Real-time implementation of airborne inertial-SLAM. Robotics and Autonomous Systems, 55(1), 62–71.

    Article  Google Scholar 

  • Kröse, B. J., Vlassis, N., Bunschoten, R., & Motomura, Y. (2001). A probabilistic model for appearance-based robot localization. Image and Vision Computing, 19(6), 381–391.

    Article  Google Scholar 

  • Kundu, A., Krishna, K. M., & Jawahar, C. (2011). Realtime multibody visual slam with a smoothly moving monocular camera. In 2011 IEEE international conference on computer vision (ICCV) (pp. 2080–2087).

  • Launay, F., Ohya, A., & Yuta, S. (2002). A corridors lights based navigation system including path definition using a topologically corrected map for indoor mobile robots. In IEEE international conference on robotics and automation, 2002. Proceedings. ICRA’02 (Vol. 4, pp. 3918–3923).

  • Lee, J.-S., & Chung, W. K. (2010). Robust mobile robot localization in highly non-static environments. Autonomous Robots, 29(1), 1–16.

    Article  Google Scholar 

  • Leung, C., Huang, S., & Dissanayake, G. (2008). Active SLAM in structured environments. In IEEE international conference on robotics and automation, 2008. ICRA 08 (pp. 1898–1903).

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., & Doucet, A. (2009). A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103.

    Article  Google Scholar 

  • Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. In AAAI/IAAI, 2002 (pp. 593–598).

  • Nieto, J., Bailey, T., & Nebot, E. (2006). Scan-slam: Combining ekf-slam and scan correlation. In Field and service robotics, 2006 (pp. 167–178). New York: Springer.

  • Nieto, J., Bailey, T., & Nebot, E. (2007). Recursive scan-matching SLAM. Robotics and Autonomous Systems, 55(1), 39–49.

    Article  Google Scholar 

  • Paz, L. M., Tardós, J. D., & Neira, J. (2008). Divide and conquer: EKF SLAM in O(n). IEEE Transactions on Robotics, 24(5), 1107–1120.

    Article  Google Scholar 

  • Roda, J. P., Sáez, J. M., & Escolano, F. (2007). Ceiling mosaics through information-based SLAM. In IEEE/RSJ international conference on intelligent robots and systems, 2007. IROS 07 (pp. 3898–3904).

  • Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 105–119.

    Article  Google Scholar 

  • Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings of third international conference on 3-D digital imaging and modeling, 2001 (pp. 145–152).

  • Shafait, F., Keysers, D., & Breuel, T. M. (2008). Efficient implementation of local adaptive thresholding techniques using integral images. DRR, 6815, 681510.

    Google Scholar 

  • Sim, R., & Roy, N. Global a-optimal robot exploration in slam. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 661–666).

  • Sunderhauf, N., & Protzel, P. Towards a robust back-end for pose graph SLAM. In 2012 IEEE international conference on robotics and automation (ICRA) (pp. 1254–1261).

  • Tardós, J. D., Neira, J., Newman, P. M., & Leonard, J. J. (2002). Robust mapping and localization in indoor environments using sonar data. The International Journal of Robotics Research, 21(4), 311–330.

    Article  Google Scholar 

  • Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., et al. (2000). Probabilistic algorithms and the interactive museum tour-guide robot minerva. The International Journal of Robotics Research, 19(11), 972–999.

    Article  Google Scholar 

  • Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., et al. (1999). MINERVA: A second-generation museum tour-guide robot. In Proceedings of 1999 IEEE international conference on robotics and automation (Vol. 3).

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Thrun, S., & Montemerlo, M. (2006). The graph SLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5–6), 403–429.

    Article  Google Scholar 

  • Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based place recognition for topological localization. In Proceedings of IEEE international conference on robotics and automation, 2000. ICRA’00 (Vol. 2, pp. 1023–1029).

  • Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  • Wang, C.-C., Thorpe, C., Thrun, S., Hebert, M., & Durrant-Whyte, H. (2007). Simultaneous localization, mapping and moving object tracking. The International Journal of Robotics Research, 26(9), 889–916.

    Article  Google Scholar 

  • Wilson, S. W. (1996). Explore/exploit strategies in autonomy. In From animals to animats 4: Proceedings of the 4th international conference on simulation of adaptive behavior, 1996 (pp. 325–332).

  • Wolf, D. F., & Sukhatme, G. S. (2005). Mobile robot simultaneous localization and mapping in dynamic environments. Autonomous Robots, 19(1), 53–65.

    Article  Google Scholar 

  • Xu, D., Han, L., Tan, M., & Li, Y. F. (2009). Ceiling-based visual positioning for an indoor mobile robot with monocular vision. IEEE Transactions on Industrial Electronics, 56(5), 1617–1628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yong An.

Electronic supplementary material

Appendix: manual node registration

Appendix: manual node registration

For various field application of the proposed algorithm, manual mapping is required as well as autonomous mapping. The reason behind the need for additional manual mapping is that we often need to locate a node at very specific position in order to enhance the robot’s navigation ability. This manual process is called manual node registration. The relations between nodes are also determined by the user, not by the Delaunay triangulation. The procedure for manual node registration is listed in Table 9. Through manual node registration, we can reduce the number of unnecessary nodes and edges and make a compact map specialized to the certain environment, hence improving the robot’s navigation ability. Figure 39 shows the example of the compact map made by manual node registration and its application to real environment.

Fig. 39
figure 39

The map constructed by manual node registration and its application to real navigation task. The map size is 21 \(\times \) 47 m (A grid is \(1~\times \) 1 m)

Table 9 Procedure for manual node registration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, SY., Lee, LK. & Oh, SY. Ceiling vision-based active SLAM framework for dynamic and wide-open environments. Auton Robot 40, 291–324 (2016). https://doi.org/10.1007/s10514-015-9453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9453-0

Keywords

Navigation