Skip to main content
Log in

Online decentralized information gathering with spatial–temporal constraints

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We are interested in coordinating a team of autonomous mobile sensor agents in performing a cooperative information gathering task while satisfying mission-critical spatial–temporal constraints. In particular, we present a novel set of constraint formulations that address inter-agent collisions, collisions with static obstacles, network connectivity maintenance, and temporal-coverage in a resource-efficient manner. These constraints are considered in the context of the target search problem, where the team plans trajectories that maximize the probability of target detection. We model constraints continuously along the agents’ trajectories and integrate these constraint models into decentralized team planning using a computationally efficient solution method based on the Lagrangian formulation and decentralized optimization. We validate our approach in simulation with five UAVs performing search, and through hardware experiments with four indoor mobile robots. Our results demonstrate team planning with spatial–temporal constraints that preserves the performance of unconstrained information gathering and is feasible to implement with reasonable computational and communication resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Ahmadzadeh, A., Jadbabaie, A., Kumar, V. & Pappas, G. (2006). Multi-UAV cooperative surveillance with spatio-temporal specifications. In Proceedings of IEEE CDC.

  • Antonelli, G., Chiaverini, S. & Marino, A. (2012). A coordination strategy for multi-robot sampling of dynamic fields. In Proceedings of IEEE ICRA.

  • Ayanian, N., & Kumar, V. (2010). Decentralized feedback controllers for multiagent teams in environments with obstacles. IEEE Transactions on Robotics, 26(5), 878–887.

    Article  Google Scholar 

  • Barry, A., Majumdar, A. & Tedrake, R. (2012). Safety verification of reactive controllers for UAV flight in cluttered environments using barrier certificates. In Proceedings of IEEE ICRA.

  • Bertsekas, D. (1996). Constrained optimization and Lagrange multiplier methods. Belmont, MA: Athena Scientific.

    Google Scholar 

  • Bhattacharya, S., Kumar, V. & Likhachev, M. (2010). Distributed optimization with pairwise constraints and its application to multi-robot path planning. In Proceedings of RSS.

  • Bretl, T. (2012). Minimum-time optimal control of many robots that move in the same direction at different speeds. IEEE Transactions on Robotics, 28(2), 351–363.

    Article  Google Scholar 

  • Casbeer, D., Kingston, D., Beard, R., & McLain, T. (2006). Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Science, 37(6), 351–360.

    Article  MATH  Google Scholar 

  • Chung, T. & Burdick, J. (2007). A decision-making framework for control strategies in probabilistic search. In Proceedings of IEEE ICRA.

  • Cole, D., Göktoǧan, A., & Sukkarieh, S. (2008). The demonstration of a cooperative control architecture for UAV teams. Experimental Robotics, 39, 501–510.

    Article  Google Scholar 

  • Desaraju, V., & How, J. (2012). Decentralized path planning for multi-agent teams with complex constraints. Autonomous Robots, 32(4), 385–403.

    Article  Google Scholar 

  • Dimarogonas, D., Kyriakopoulos, K. & Theodorakatos, D. (2006). Totally distributed motion control of sphere world multi-agent systems using decentralized navigation functions. In Proceedings of IEEE ICRA.

  • Durham, J., Carli, R., Frasca, P., & Bullo, F. (2012). Discrete partitioning and coverage control for gossiping robots. IEEE Transactions on Robotics, 28(2), 364–378.

    Article  Google Scholar 

  • Frew, E., Lawrence, D., & Morris, S. (2008). Coordinated standoff tracking of moving targets using lyapunov guidance vector fields. Journal of Guidance, Control, and Dynamics, 31(2), 290–306.

    Article  Google Scholar 

  • Furukawa, T., Bourgault, F., Lavis, B. & Durrant-Whyte, H. (2006). Recursive bayesian search-and-tracking using coordinated UAVs for lost targets. In Proceedings of IEEE ICRA.

  • Gan, S. & Sukkarieh, S. (2011). Multi-UAV target search using explicit decentralized gradient-based negotiation. In Proceedings of IEEE ICRA.

  • Gan, S., Fitch, R. & Sukkarieh, S. (2012). Real-time decentralized search with inter-agent collision avoidance. In Proceedings of IEEE ICRA.

  • Gillula, J., Hoffmann, G., Huang, H., Vitus, M., & Tomlin, C. (2011). Applications of hybrid reachability analysis to robotic aerial vehicles. International Journal of Robotics Research, 30(3), 335–354.

    Article  Google Scholar 

  • Grocholsky, B., Makarenko, A. & Durrant-Whyte, H. (2003). Information-theoretic coordinated control of multiple sensor platforms. In Proceedings of IEEE ICRA.

  • Hoffmann, G., & Tomlin, C. (2010). Mobile sensor network control using mutual information methods and particle filters. IEEE Transactions on Automatic Control, 55(1), 32–47.

    Article  MathSciNet  Google Scholar 

  • Hollinger, G. & Singh, S. (2010). Multi-robot coordination with periodic connectivity. In Proceedings of IEEE ICRA.

  • Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient multi-robot search for a moving target. International Journal of Robotics Research, 28(2), 201–219.

    Article  Google Scholar 

  • How, J. & King, E. (2004). Flight demonstrations of cooperative control for UAV teams. AIAA 3rd Unmanned Unlimited Technical Conf Workshop and Exhibit, Chicago.

  • Inalhan, G. (2004). Decentralized optimization across independent decision makers with incomplete models. PhD thesis, Stanford University.

  • Julian, B., Angermann, M., Schwager, M., & Rus, D. (2012). Distributed robotic sensor networks: An information-theoretic approach. International Journal of Robotics Research, 31(10), 1134–1154.

    Article  Google Scholar 

  • Kingston, D., Beard, R., & Holt, R. (2008). Decentralized perimeter surveillance using a team of UAVs. IEEE Transactions on Robotics, 24(6), 1394–1404.

    Article  Google Scholar 

  • Kovacina, M., Palmer, D., Yang, G. & Vaidyanathan, R. (2002). Multi-agent control algorithms for chemical cloud detection and mapping using unmanned air vehicles. In Proceedings of IEEE/RSJ IROS.

  • Kuwata, Y. & How, J. (2006). Decentralized cooperative trajectory optimization for UAVs with coupling constraints. In Proceedings of IEEE CDC.

  • Lal, R. & Fitch, R. (2009). A hardware-in-the-loop simulator for distributed robotics. In Proceedings of ARAA ACRA.

  • Lapierre, L., & Zapata, R. (2012). A guaranteed obstacle avoidance guidance system. Autonomous Robots, 32(3), 177–187.

    Google Scholar 

  • Leung, C., Huang, S., Kwok, N., & Dissanayake, G. (2006). Planning under uncertainty using model predictive control for information gathering. Robotics and Autonomous Systems, 54(11), 898–910.

    Google Scholar 

  • Mathews, G., Durrant-Whyte, H., & Prokopenko, M. (2009). Decentralised decision making in heterogeneous teams using anonymous optimisation. Robotics and Autonomous Systems, 57(3), 310–320.

    Article  Google Scholar 

  • Raffard, R., Tomlin, C. & Boyd, S. (2004). Distributed optimization for cooperative agents: application to formation flight. In Proceedings of IEEE CDC.

  • Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. (2012). Multi-robot three-dimensional coverage of unknown areas. International Journal of Robotics Research, 31(6), 738–752.

    Article  Google Scholar 

  • Sabattini, L., Secchi, C. & Chopra, N. (2012). Decentralized connectivity maintenance for networked lagrangian dynamical systems. In Proceedings of IEEE ICRA.

  • Schouwenaars, T., How, J. & Feron, E. (2004). Decentralized cooperative trajectory planning of multiple aircraft with hard safety guarantees. In Proceedings of AIAA GNC.

  • Tang, Z., & Ozguner, U. (2005). Motion planning for multitarget surveillance with mobile sensor agents. IEEE Transactions on Robotics, 21(5), 898–908.

    Article  Google Scholar 

  • Tanner, H., & Christodoulakis, D. (2007). Decentralized cooperative control of heterogeneous vehicle groups. Robotics and Autonomous Systems, 55(11), 811–823.

    Article  Google Scholar 

  • Tisdale, J., Kim, Z., & Hedrick, J. (2009). Autonomous UAV path planning and estimation. IEEE Robotics and Automation Magazine, 16(2), 35–42.

    Article  Google Scholar 

  • Wong, E., Bourgault, F. & Furukawa, T. (2005). Multi-vehicle bayesian search for multiple lost targets. In Proceedings of IEEE ICRA.

  • Wu, A., & How, J. (2012). Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles. Autonomous Robots, 32(3), 227–242.

    Article  MathSciNet  Google Scholar 

  • Yang, K., Gan, S., & Sukkarieh, S. (2010). An efficient path planning and control algorithm for RUAVs in unknown and cluttered environments. Journal of Intelligent and Robotic Systems, 57(1), 101–122.

    Article  MATH  Google Scholar 

  • Zavlanos, M., & Pappas, G. (2007). Potential fields for maintaining connectivity of mobile networks. IEEE Transactions on Robotics, 23(4), 812–816.

    Article  Google Scholar 

  • Zavlanos, M., & Pappas, G. (2008). Distributed connectivity control of mobile networks. IEEE Transactions on Robotics, 24(6), 1416–1428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seng Keat Gan.

Appendices

1: Multistep motion model derivatives

This section details the explicit gradient form for the states of a sensor agent with respect to its action variables along a multi-step piece-wise constant action horizon (Gan and Sukkarieh 2011). The agent’s state transition is:

$$\begin{aligned} s^{k+1} = s^{k} + \left[ {\begin{array}{l} { \frac{V}{u^k} \left( \sin \left( \psi ^{k}+\Delta \psi ^k \right) -\sin {\psi ^{k}} \right) } \\ { \frac{V}{u^k} \left( -\cos \left( \psi ^{k}+\Delta \psi ^k \right) +\cos {\psi ^{k}} \right) } \\ { \Delta \psi ^k } \\ \end{array}} \right] , \nonumber \\ \end{aligned}$$
(57)

where \(\Delta \psi ^k = u^k \Delta t^k\). Differentiating Eq. (57) with respect to the turn rate command \(u^k\) gives:

$$\begin{aligned} \frac{{\partial {s}^{k + 1} }}{{\partial u^k }} = \left[ {\begin{array}{l} \frac{{V\Delta t^k \cos \psi ^{k + 1} - x^{k + 1} + x^{^k } }}{u^k} \\ \frac{{V\Delta t^k \sin \psi ^{k + 1} - y^{k + 1} + y^{^k } }}{u^k} \\ {\Delta t^k } \\ \end{array}} \right] . \end{aligned}$$
(58)

Note that \(\frac{{\partial {s}^{k} }}{{\partial u^k }} = 0\) since \(\psi ^k\) is the action starting from state s \(^k\) and thus it has no effect on s \(^{k}\). Similarly, the next sensing state is:

$$\begin{aligned} s^{k + 2}&= {s}^{k + 1} \nonumber \\&+ \left[ {\begin{array}{*{20}c} {\frac{V}{{u^{k + 1} }}\left( {\sin \left( \psi ^{k+1} + \Delta \psi ^{k+1} \right) - \sin \psi ^{k + 1} } \right) } \\ {\frac{V}{{u^{k + 1} }}\left( { - \cos \left( \psi ^{k+1} + \Delta \psi ^{k+1} \right) + \cos \psi ^{k + 1} } \right) } \\ {\Delta \psi ^{k+1} } \\ \end{array}} \right] .\nonumber \\ \end{aligned}$$
(59)

Its derivative is:

$$\begin{aligned} \frac{{\partial {s}^{k + 2} }}{{\partial u^k }} = \frac{{\partial {s}^{k + 1} }}{{\partial u^k }} + \frac{{\partial \psi ^{k + 1} }}{{\partial u^k }}\left[ {\begin{array}{c} { - \left( {y^{k + 2} - y^{k + 1} } \right) } \\ {x^{k + 2} - x^{k + 1} } \\ 0 \\ \end{array}} \right] . \end{aligned}$$
(60)

The sensitivity of the remaining sensing states to the same action variable can be obtained recursively by differentiating Eq. (58) with respect to the same action for the remaining segments. This can be compactly described in a matrix form:

$$\begin{aligned} \frac{{\partial { s^{k+1:k+N}}}}{{\partial v^k }} = \left[ {\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {\frac{{\partial {s}^{k + 1} }}{{\partial u^k }}} &{} 0 &{} \ldots &{} 0 \\ {\frac{{\partial {s}^{k + 2} }}{{\partial u^k }}} &{} {\frac{{\partial {s}^{k + 2} }}{{\partial u^{k + 1} }}} &{} 0 &{} \vdots \\ \vdots &{} {\frac{{\partial {s}^{k + 3} }}{{\partial u^{k + 1} }}} &{} \ddots &{} 0\\ {\frac{{\partial {s}^{k + N} }}{{\partial u^k }}} &{} \ldots &{} {\frac{{\partial {s}^{k + N - 1} }}{{\partial u^{k + N - 2} }}} &{} {\frac{{\partial {s}^{k + N} }}{{\partial u^{k + N - 1} }}} \\ \end{array}} \right] , \end{aligned}$$
(61)

where the diagonal and cross components are calculated using Eqs. (58) and (60) respectively.

2: Information-theoretic search derivatives

This section details the explicit gradient form for the probabilistic search objective function with respect to its action variables along a multi-step piece-wise constant action horizon (Gan and Sukkarieh 2011). In decentralized information-theoretic target search, a commonly defined objective function is the joint probability of target no-detection events. From the perspective of agent \(i\):

$$\begin{aligned} J_i\left( v_i^k, \alpha _{\mathcal {J}^{-i} i}^k \right) \!=\! \mathop \int \limits _{\xi } P \left( z_{i}^{k+1:k+N}\!=\!\overline{D}| \xi ,s_{i}^{k+1:k+N} \right) {}^{i}\bar{b}^k_\xi d\xi .\nonumber \\ \end{aligned}$$
(62)

Assuming the target belief \({}^{i}\bar{b}_\xi ^k\) is static over the action horizon \(H\), which is reasonable for slow target dynamics and fast replanning frequency, and assuming each consecutive sensor observation is independent, the joint conditional probability of not detecting a target over the whole action horizon is:

$$\begin{aligned} P\left( {z}^{k + 1:k + N}=\overline{D}|\xi ,s^{k + 1:k + N} \right)&= \prod \limits _{l = 1}^N {P\left( {z}^{k + l}=\overline{D}|\xi ,s^{k + l} \right) }\nonumber \\&= \prod \limits _{l = 1}^N {O\left( \xi ,s^{k + l} \right) }. \end{aligned}$$
(63)

The first order derivative of \(J_i\) with respect to its local action vector \(v_i^k\) is:

$$\begin{aligned} \frac{{\partial J_i}}{{\partial v_i^k }} = \left[ {\frac{{\partial J_i}}{{\partial u_i^k }}, \ldots ,\frac{{\partial J_i}}{{\partial u_i^{k + N - 1} }}} \right] ^T . \end{aligned}$$

Substituting Eq. (63) into Eq. (62) and applying partial derivatives with respect to each of the individual action variable results in the following chained partial derivatives:

$$\begin{aligned}&\frac{{\partial J_i }}{{\partial u_i^{k + m} }}\nonumber \\&\quad = \mathop \int \limits _\xi {\sum \limits _{\begin{array}{c} n =\\ m + 1 \end{array}}^N {\frac{{\partial O\left( {s_i^{k + n} },\xi \right) }}{{\partial u_i^{k + m} }}\prod \limits _{\begin{array}{c} l = 1 \\ l \ne n \end{array}}^N {O\left( {s_i^{k + l},\xi } \right) {}^{i}\bar{b}_\xi ^k d\xi } } } \nonumber \\&\quad = \mathop \int \limits _\xi {\sum \limits _{\begin{array}{c} n =\\ m + 1 \end{array}}^N { \left( {\frac{{\partial O\left( {s_i^{k + n} },\xi \right) }}{{\partial {s_i} }}\frac{{\partial s_i^{k + n} }}{{\partial u_i^{k + m} }}} \right) \prod \limits _{\begin{array}{c} l = 1 \\ l \ne n \end{array}}^N {O\left( {s_i^{k + l} ,\xi } \right) {}^{i}\bar{b}_\xi ^k d\xi } } } , \nonumber \\ \end{aligned}$$
(64)

where \(\frac{{\partial s_i^{k + n} }}{{\partial u_i^{k + m} }}\) is the sensitivity of the sensing state to the action variables, obtainable from “Multistep motion model derivatives” section, and \(\frac{{\partial O\left( {s_i^{k + n} },\xi \right) }}{{\partial {s_i} }}\) is the sensitivity of the sensor model to its corresponding sensing state.

For a distance-based sensor model,

$$\begin{aligned} O\left( \xi , s \right) = 1 - P_{d_{max}} e^{-\sigma \left( \frac{d}{d_{max}} \right) ^2}. \end{aligned}$$
(65)

Since it is invariant to the sensor orientation, its sensitivity to sensor orientation is zero. We are left only with the derivative with respect to sensor position as

$$\begin{aligned} \frac{{\partial O\left( {\xi ,s } \right) }}{{\partial { p}}} = \frac{{2\sigma }}{{d_{\max }^2 }}\left( {{ p} - \xi } \right) \left( 1-O\left( {\xi ,s } \right) \right) , \end{aligned}$$
(66)

and thus:

$$\begin{aligned} \frac{{\partial O\left( {\xi ,s } \right) }}{{\partial {s}}} = \left[ \frac{{\partial O\left( {\xi ,s} \right) }}{{\partial { p}}}, 0 \right] . \end{aligned}$$
(67)

3: Temporal-coverage derivatives

This section details the explicit gradient of the temporal-coverage constraint model in Sect. 7.3. The partial derivative of Eq. (53) with respect to sensing states is:

$$\begin{aligned} \frac{\partial G_{is}^k}{\partial s_{i}^k} = h\left( \bar{\delta }_{is}^k \right) \frac{\partial {\bar{\delta }}_{is}^k}{\partial s_{i}^k} , \end{aligned}$$
(68)

where

$$\begin{aligned} \dfrac{\partial \delta }{\partial s}= -\frac{-R_{mc}}{d_{BC}}\left( \frac{\partial \alpha }{\partial s} + \frac{\partial \beta }{\partial s} \right) - \frac{d_{CO} \delta }{{d_{BC}}^2}\left( \frac{\partial d_{CO}}{\partial s} \right) . \end{aligned}$$
(69)

Here,

$$\begin{aligned} \frac{\partial d_{CO}}{\partial s} = \left[ \begin{array}{c} {\frac{p_O-p_s}{d_{CO}}} \\ { \frac{\left( x_O-x \right) \left( y-y_s \right) +\left( y_O-y \right) \left( x_s-x \right) }{d_{CO}}} \end{array} \right] , \end{aligned}$$
(70)
$$\begin{aligned} \frac{\partial \alpha }{\partial s} = -\frac{R_{mc}}{{d_{CO}}^2\cos {\alpha }} \frac{\partial d_{CO}}{\partial s}, \end{aligned}$$
(71)

and

$$\begin{aligned} \frac{\partial \beta }{\partial s} = \left[ \begin{array}{c} {\frac{{d_{CO}}^2\cos {\psi }-a_1(x_s-x_O)}{{d_{CO}}^3\sin {\beta }}} \\ {\frac{{d_{CO}}^2\sin {\psi }-a_1(y_s-y_O)}{{d_{CO}}^3\sin {\beta }}} \\ {\frac{a_2 {d_{CO}} - wR_{mc} d_{CO} + a_1 \frac{\partial d_{CO}}{\partial \psi } }{{d_{CO}}^2\sin {\beta }}} \end{array} \right] , \end{aligned}$$
(72)

where \(a_1\) and \(a_2\) are defined respectively as

$$\begin{aligned} a_1 = (x_s-x_O)\cos {\psi } + (y_s-y_O)\sin {\psi }, \end{aligned}$$

and

$$\begin{aligned} a_2 = (x_s-x_O)\sin {\psi } + (y_s-y_O)\cos {\psi }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, S.K., Fitch, R. & Sukkarieh, S. Online decentralized information gathering with spatial–temporal constraints. Auton Robot 37, 1–25 (2014). https://doi.org/10.1007/s10514-013-9369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9369-5

Keywords

Navigation