Skip to main content

Direction-changing fall control of humanoid robots: theory and experiments


Humanoid robots are expected to share human environments in the future and it is important to ensure the safety of their operation. A serious threat to safety is the fall of such robots, which can seriously damage the robot itself as well as objects in its surrounding. Although fall is a rare event in the life of a humanoid robot, the robot must be equipped with a robust fall strategy since the consequences of fall can be catastrophic. In this paper we present a strategy to change the default fall direction of a robot, during the fall. By changing the fall direction the robot may avoid falling on a delicate object or on a person. Our approach is based on the key observation that the toppling motion of a robot necessarily occurs at an edge of its support area. To modify the fall direction the robot needs to change the position and orientation of this edge vis-a-vis the prohibited directions. We achieve this through intelligent stepping as soon as the fall is predicted. We compute the optimal stepping location which results in the safest fall. Additional improvement to the fall controller is achieved through inertia shaping, which is a principled approach aimed at manipulating the robot’s centroidal inertia, thereby indirectly controlling its fall direction. We describe the theory behind this approach and demonstrate our results through simulation and experiments of the Aldebaran NAO H25 robot. To our knowledge, this is the first implementation of a controller that attempts to change the fall direction of a humanoid robot.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33


  1. The robot can temporarily topple about a vertex of the foot support polygon.

  2. More detail about Capture Point is included in Sect. 5.2.2.

  3. We assume 6-DoF legs.

  4. Extension to a general case with multiple objects such as in Fig 16 is trivial once the desired fall direction is chosen.

  5. The actual determination of this is beyond the scope of this paper.


  • Ashton-Miller, J. A. (2000). Biomechanics of mobility and fall-arrests in older adults. RESNA 2000: Technology for the new millenium (pp. 537–542). Florida, Orlando.

  • Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. Technical Report. San Diego: Department of Mathematics, University of California. : Department of Mathematics, University of California.

  • Chia, P. C., Lee, C. H., Chen, T. S., Kuo, C. H., Lee, M. Y., & Chen, C. M. S. (2011). Correlations of falling signals between biped robots and humans with 3-axis accelerometers. In International Conference on System Science and Engineering (pp. 509–514). Macau, China.

  • Cordero, A. F. (2003). Human gait, stumble and ... fall? Ph.D. Thesis, University of Twente, Enschede, The Netherlands.

  • Cordero, A. F., Koopman, H., & van der Helm, F. (2003). Multiple-step strategies to recover from stumbling perturbations. Gait & Posture, 18(1), 47–59.

    Article  Google Scholar 

  • Cordero, A. F., Koopman, H., & van der Helm, F. (2004). Mechanical model of the recovery from stumbling. Biological Cybernetics, 91(4), 212–22.

    Article  MATH  Google Scholar 

  • DeGoede, K. M., & Ashton-Miller, J. A. (2003). Biomechanical simulations of forward fall arrests: Effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. Journal of Biomechanics, 36, 413–420.

    Article  Google Scholar 

  • Fantoni, I., & Lozano, R. (2001). Non-linear control for underactuated mechanical systems (communications and control engineering). London: Springer-Verlag.

    Google Scholar 

  • Fujiwara, K., F., K., Saito, H., Kajita, S., Harada, K., & Hirukawa, H. (2004). Falling motion control of a humanoid robot trained by virtual supplementary tests. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1077–1082). New Orleans, LA, USA.

  • Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., et al. (2006). Towards an optimal falling motion for a humanoid robot. In Humanoids06 (pp. 524–529). Genova, Italy.

  • Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka, S., Hirukawa, H. (2007). An optimal planning of falling motions of a humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 456–462). San Diego, California, USA.

  • Fujiwara, K., Kanehiro, F., Kajita, S., Hirukawa, H. (2004). Safe knee landing of a human-size humanoid robot while falling forward. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 503–508). Sendai, Japan.

  • Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., & Hirukawa, H. (2002). UKEMI: Falling motion control to minimize damage to biped humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2521–2526). Lausanne, Switzerland.

  • Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., & Maisonnier, B. (2009). Mechatronic design of NAO humanoid. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2124–2129). Kobe, Japan.

  • Hobbelen, D. G. E., & Wisse, M. (2007). A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm. IEEE Transactions on Robotics and Automation, 23(6), 1213–1224.

    Article  Google Scholar 

  • Höhn, O., Gačnik, J., & Gerth, W. (2006). Detection and classification of posture instabilities of bipedal robots. In Climbing and walking robots (pp. 409–416). Berlin/Heidelberg: Springer.

  • Höhn, O., & Gerth, W. (2009). Probabilistic balance monitoring for bipedal robots. International Journal of Robotics Research, 28(2), 245–256.

    Article  Google Scholar 

  • Ishida, T., Kuroki, Y., & Takahashi, T. (2004). Analysis of motions of a small biped entertainment robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 142–147). Sendai, Japan.

  • Kalyanakrishnan, S., & Goswami, A. (2011). Learning to predict humanoid fall. International Journal of Humanoid Robots, 8(2), 245–273.

    Article  Google Scholar 

  • Kanoi, R. & Hartland, C. (2010). Fall detections in humanoid walk patterns using reservoir computing based control architecture. In 5th National conference on Control Architecture of Robots. Douai, France.

  • Karssen, J. G. D., & Wisse, M. (2009). Fall detection in walking robots by multi-way principal component analysis. Robotica, 27(2), 249–257.

    Article  Google Scholar 

  • Kunihiro, O., Koji, T., & Yasuo, K. (2007) Falling motion control for humanoid robots while walking. In Humanoids07, Pittsburgh, 2007 (pp. 306–311).

  • LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lee, S. H. & Goswami, A. (2009). The reaction mass pendulum (RMP) model for humanoid robot gait and balance control. In B. Choi (Ed.), Humanoid robots. In-Tech (, Austria (February, 2009) (pp. 167–186). (earlier version appeared in ICRA 2007).

  • Murray, R. M., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Nagarajan, U., Goswami, A.: Generalized direction changing fall control of humanoid robots among multiple objects. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3316–3322). Anchorage, Alaska.

  • Ogata, K., Terada, K., & Kuniyoshi, Y. (2008). Real-time selection and generation of fall damagae reduction actions for humanoid robots. In Humanoids, 08 (pp. 233–238). Daejeon, Korea.

  • Pratt, J., Carff, J., Drakunov, S. & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In Humanoids06. Genoa, Italy.

  • Renner, R. & Behnke, S. (2006) Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2967–2973). Beijing.

  • Robinovitch, S. N., Brumer, R., & Maurer, J. (2004). Effect of the “squat protective response” on impact velocity during backward falls. Journal of Biomechanics, 37(9), 1329–1337.

    Article  Google Scholar 

  • Robinovitch, S. R., Chiu, J., Sandler, R., & Liu, Q. (2000). Impact severity in self-initiated sits and falls associates with center-of-gravity excursion during descent. Journal of Biomechanics, 33, 863–870.

    Article  Google Scholar 

  • Robinovitch, S. R., Hsiao, E. T., Sandler, R., Cortez, J., Liu, Q., & Paiment, G. D. (2000). Prevention of falls and fall-related fractures through biomechanics. Exercise and Sports Sciences Review, 28(2), 74–79.

    Google Scholar 

  • Ruiz-del Solar, J., Moya, J. & Parra-Tsunekawa, I. (2010). Fall detection and management in biped humanoid robots. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3323– 3328).

  • Ruiz-del Solar, J., Palma-Amestoy, R., Marchant, R., Parra-Tsunekawa, I., & Zegers, P. (2009). Learning to fall: Designing low damage fall sequences for humanoid soccer robots. Robotics and Autonomous Systems, 57(8), 796–807.

    Google Scholar 

  • Spong, M. W., Corke, P., & Lozano, R. (2001). Nonlinear control of inertia wheel pendulum. Automatica, 37, 1845–1851.

    Article  MATH  Google Scholar 

  • Stephens, B.: Humanoid push recovery. In Humanoids07. Pittsburgh, PA, USA.

  • Tan, J. S., Eng, J. J., Robinovitch, S. R., & Warnick, B. (2006). Wrist impact velocities are smaller in forward falls than backward falls from standing. Journal of Biomechanics, 39(10), 1804–1811.

    Article  Google Scholar 

  • Walker, M. W., & Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement, and Control, 104, 205–211.

    Article  MATH  Google Scholar 

  • Welch, G. & Bishop, G. (1995). An introduction to the Kalman filter. Technical Report. Chapel Hill, NC, USA

  • Wilken, T., Missura, M., & Behnke, S. (2009). Designing falling motions for a humanoid soccer goalie. Proceedings of the 4th Workshop on Humanoid Soccer Robots (Humanoids 2009) (pp. 79–84). Paris, France.

  • Yin, K., Loken, K. & van de Panne, M. (2007). Simbicon: Simple biped locomotion control. ACM Transactions on Graphics, 26(3) (August 2007).

  • Yun, S. K. & Goswami, A. (2012) Humanoid robot safe fall using Aldebaran NAO. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 71–78). St. Paul, Minnesota, US.

  • Yun, S. K., Goswami, A. & Sakagami, Y. (2009). Safe fall: Humanoid robot fall direction change through intelligent stepping and inertia shaping. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 781–787). Kobe, Japan.

Download references


Seung-kook (2008), Umashankar (2009), Sung-Hee (2006), KangKang (2007), and Shivaram (2008) all contributed to this work during their internships at HRI at different times. Seung-kook (2010–2013) did major part of the subsequent work while working as a Senior Scientist at HRI.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ambarish Goswami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 23336 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goswami, A., Yun, Sk., Nagarajan, U. et al. Direction-changing fall control of humanoid robots: theory and experiments. Auton Robot 36, 199–223 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Humanoid robot fall
  • Safe fall
  • Fall prediction
  • Direction-changing fall
  • Inertia shaping