Advertisement

Autonomous Robots

, Volume 36, Issue 3, pp 199–223 | Cite as

Direction-changing fall control of humanoid robots: theory and experiments

  • Ambarish Goswami
  • Seung-kook Yun
  • Umashankar Nagarajan
  • Sung-Hee Lee
  • KangKang Yin
  • Shivaram Kalyanakrishnan
Article

Abstract

Humanoid robots are expected to share human environments in the future and it is important to ensure the safety of their operation. A serious threat to safety is the fall of such robots, which can seriously damage the robot itself as well as objects in its surrounding. Although fall is a rare event in the life of a humanoid robot, the robot must be equipped with a robust fall strategy since the consequences of fall can be catastrophic. In this paper we present a strategy to change the default fall direction of a robot, during the fall. By changing the fall direction the robot may avoid falling on a delicate object or on a person. Our approach is based on the key observation that the toppling motion of a robot necessarily occurs at an edge of its support area. To modify the fall direction the robot needs to change the position and orientation of this edge vis-a-vis the prohibited directions. We achieve this through intelligent stepping as soon as the fall is predicted. We compute the optimal stepping location which results in the safest fall. Additional improvement to the fall controller is achieved through inertia shaping, which is a principled approach aimed at manipulating the robot’s centroidal inertia, thereby indirectly controlling its fall direction. We describe the theory behind this approach and demonstrate our results through simulation and experiments of the Aldebaran NAO H25 robot. To our knowledge, this is the first implementation of a controller that attempts to change the fall direction of a humanoid robot.

Keywords

Humanoid robot fall Safe fall Fall prediction Direction-changing fall Inertia shaping 

Notes

Acknowledgments

Seung-kook (2008), Umashankar (2009), Sung-Hee (2006), KangKang (2007), and Shivaram (2008) all contributed to this work during their internships at HRI at different times. Seung-kook (2010–2013) did major part of the subsequent work while working as a Senior Scientist at HRI.

Supplementary material

10514_2013_9343_MOESM1_ESM.avi (22.8 mb)
Supplementary material 1 (avi 23336 KB)

References

  1. Ashton-Miller, J. A. (2000). Biomechanics of mobility and fall-arrests in older adults. RESNA 2000: Technology for the new millenium (pp. 537–542). Florida, Orlando.Google Scholar
  2. Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. Technical Report. San Diego: Department of Mathematics, University of California. : Department of Mathematics, University of California.Google Scholar
  3. Chia, P. C., Lee, C. H., Chen, T. S., Kuo, C. H., Lee, M. Y., & Chen, C. M. S. (2011). Correlations of falling signals between biped robots and humans with 3-axis accelerometers. In International Conference on System Science and Engineering (pp. 509–514). Macau, China.Google Scholar
  4. Cordero, A. F. (2003). Human gait, stumble and ... fall? Ph.D. Thesis, University of Twente, Enschede, The Netherlands.Google Scholar
  5. Cordero, A. F., Koopman, H., & van der Helm, F. (2003). Multiple-step strategies to recover from stumbling perturbations. Gait & Posture, 18(1), 47–59.CrossRefGoogle Scholar
  6. Cordero, A. F., Koopman, H., & van der Helm, F. (2004). Mechanical model of the recovery from stumbling. Biological Cybernetics, 91(4), 212–22.CrossRefzbMATHGoogle Scholar
  7. DeGoede, K. M., & Ashton-Miller, J. A. (2003). Biomechanical simulations of forward fall arrests: Effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. Journal of Biomechanics, 36, 413–420.CrossRefGoogle Scholar
  8. Fantoni, I., & Lozano, R. (2001). Non-linear control for underactuated mechanical systems (communications and control engineering). London: Springer-Verlag.Google Scholar
  9. Fujiwara, K., F., K., Saito, H., Kajita, S., Harada, K., & Hirukawa, H. (2004). Falling motion control of a humanoid robot trained by virtual supplementary tests. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1077–1082). New Orleans, LA, USA.Google Scholar
  10. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., et al. (2006). Towards an optimal falling motion for a humanoid robot. In Humanoids06 (pp. 524–529). Genova, Italy.Google Scholar
  11. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka, S., Hirukawa, H. (2007). An optimal planning of falling motions of a humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 456–462). San Diego, California, USA.Google Scholar
  12. Fujiwara, K., Kanehiro, F., Kajita, S., Hirukawa, H. (2004). Safe knee landing of a human-size humanoid robot while falling forward. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 503–508). Sendai, Japan.Google Scholar
  13. Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., & Hirukawa, H. (2002). UKEMI: Falling motion control to minimize damage to biped humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2521–2526). Lausanne, Switzerland.Google Scholar
  14. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., & Maisonnier, B. (2009). Mechatronic design of NAO humanoid. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2124–2129). Kobe, Japan.Google Scholar
  15. Hobbelen, D. G. E., & Wisse, M. (2007). A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm. IEEE Transactions on Robotics and Automation, 23(6), 1213–1224.CrossRefGoogle Scholar
  16. Höhn, O., Gačnik, J., & Gerth, W. (2006). Detection and classification of posture instabilities of bipedal robots. In Climbing and walking robots (pp. 409–416). Berlin/Heidelberg: Springer.Google Scholar
  17. Höhn, O., & Gerth, W. (2009). Probabilistic balance monitoring for bipedal robots. International Journal of Robotics Research, 28(2), 245–256.CrossRefGoogle Scholar
  18. Ishida, T., Kuroki, Y., & Takahashi, T. (2004). Analysis of motions of a small biped entertainment robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 142–147). Sendai, Japan.Google Scholar
  19. Kalyanakrishnan, S., & Goswami, A. (2011). Learning to predict humanoid fall. International Journal of Humanoid Robots, 8(2), 245–273.CrossRefGoogle Scholar
  20. Kanoi, R. & Hartland, C. (2010). Fall detections in humanoid walk patterns using reservoir computing based control architecture. In 5th National conference on Control Architecture of Robots. Douai, France.Google Scholar
  21. Karssen, J. G. D., & Wisse, M. (2009). Fall detection in walking robots by multi-way principal component analysis. Robotica, 27(2), 249–257.CrossRefGoogle Scholar
  22. Kunihiro, O., Koji, T., & Yasuo, K. (2007) Falling motion control for humanoid robots while walking. In Humanoids07, Pittsburgh, 2007 (pp. 306–311).Google Scholar
  23. LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  24. Lee, S. H. & Goswami, A. (2009). The reaction mass pendulum (RMP) model for humanoid robot gait and balance control. In B. Choi (Ed.), Humanoid robots. In-Tech (http://www.intechweb.org), Austria (February, 2009) (pp. 167–186). http://intechweb.org/downloadpdf.php?id=6240. (earlier version appeared in ICRA 2007).
  25. Murray, R. M., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.zbMATHGoogle Scholar
  26. Nagarajan, U., Goswami, A.: Generalized direction changing fall control of humanoid robots among multiple objects. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3316–3322). Anchorage, Alaska.Google Scholar
  27. Ogata, K., Terada, K., & Kuniyoshi, Y. (2008). Real-time selection and generation of fall damagae reduction actions for humanoid robots. In Humanoids, 08 (pp. 233–238). Daejeon, Korea.Google Scholar
  28. Pratt, J., Carff, J., Drakunov, S. & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In Humanoids06. Genoa, Italy.Google Scholar
  29. Renner, R. & Behnke, S. (2006) Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2967–2973). Beijing.Google Scholar
  30. Robinovitch, S. N., Brumer, R., & Maurer, J. (2004). Effect of the “squat protective response” on impact velocity during backward falls. Journal of Biomechanics, 37(9), 1329–1337.CrossRefGoogle Scholar
  31. Robinovitch, S. R., Chiu, J., Sandler, R., & Liu, Q. (2000). Impact severity in self-initiated sits and falls associates with center-of-gravity excursion during descent. Journal of Biomechanics, 33, 863–870.CrossRefGoogle Scholar
  32. Robinovitch, S. R., Hsiao, E. T., Sandler, R., Cortez, J., Liu, Q., & Paiment, G. D. (2000). Prevention of falls and fall-related fractures through biomechanics. Exercise and Sports Sciences Review, 28(2), 74–79.Google Scholar
  33. Ruiz-del Solar, J., Moya, J. & Parra-Tsunekawa, I. (2010). Fall detection and management in biped humanoid robots. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3323– 3328).Google Scholar
  34. Ruiz-del Solar, J., Palma-Amestoy, R., Marchant, R., Parra-Tsunekawa, I., & Zegers, P. (2009). Learning to fall: Designing low damage fall sequences for humanoid soccer robots. Robotics and Autonomous Systems, 57(8), 796–807.Google Scholar
  35. Spong, M. W., Corke, P., & Lozano, R. (2001). Nonlinear control of inertia wheel pendulum. Automatica, 37, 1845–1851.CrossRefzbMATHGoogle Scholar
  36. Stephens, B.: Humanoid push recovery. In Humanoids07. Pittsburgh, PA, USA. Google Scholar
  37. Tan, J. S., Eng, J. J., Robinovitch, S. R., & Warnick, B. (2006). Wrist impact velocities are smaller in forward falls than backward falls from standing. Journal of Biomechanics, 39(10), 1804–1811.CrossRefGoogle Scholar
  38. Walker, M. W., & Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement, and Control, 104, 205–211.CrossRefzbMATHGoogle Scholar
  39. Welch, G. & Bishop, G. (1995). An introduction to the Kalman filter. Technical Report. Chapel Hill, NC, USAGoogle Scholar
  40. Wilken, T., Missura, M., & Behnke, S. (2009). Designing falling motions for a humanoid soccer goalie. Proceedings of the 4th Workshop on Humanoid Soccer Robots (Humanoids 2009) (pp. 79–84). Paris, France.Google Scholar
  41. Yin, K., Loken, K. & van de Panne, M. (2007). Simbicon: Simple biped locomotion control. ACM Transactions on Graphics, 26(3) (August 2007).Google Scholar
  42. Yun, S. K. & Goswami, A. (2012) Humanoid robot safe fall using Aldebaran NAO. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 71–78). St. Paul, Minnesota, US.Google Scholar
  43. Yun, S. K., Goswami, A. & Sakagami, Y. (2009). Safe fall: Humanoid robot fall direction change through intelligent stepping and inertia shaping. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 781–787). Kobe, Japan.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ambarish Goswami
    • 1
  • Seung-kook Yun
    • 2
  • Umashankar Nagarajan
    • 3
  • Sung-Hee Lee
    • 4
  • KangKang Yin
    • 5
  • Shivaram Kalyanakrishnan
    • 6
  1. 1.Honda Research Institute USAMountain ViewUSA
  2. 2.SRI InternationalMenlo ParkUSA
  3. 3.Disney Research PittsburghPittsburghUSA
  4. 4.Graduate School of Culture TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
  5. 5.School of ComputingNational University of Singapore (NUS)SingaporeSingapore
  6. 6.Yahoo! Labs BangaloreBengaluruIndia

Personalised recommendations