Skip to main content
Log in

Thermodynamic analysis of uranium–gadolinium fuel stability at high temperatures

  • Published:
Atomic Energy Aims and scope

Using the most accurate measurements of the liquidus temperature in the UO2–Gd2O3 system up to 30 mol.% of Gd2O3, thermodynamic models of the melt and cubic solution GdO1.5 in UO2 are constructed. The equilibrium phase diagram of the system UO2–GdO1.5 in the interval 1900–3200 K is calculated in the entire composition range and the metastable diagram is calculated assuming that no cubic solid solutions are formed. The upper and lower boundaries of the melting onset temperature (solidus) of uraniumgadolinium fuel are presented. The phase composition of the pellets made from such fuel and, ultimately, the technology determine the melting onset temperature uniquely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Characteristics and Use of Urania-Gadolinia Fuel, IAEA-TECDOC-844, IAEA, Vienna (1995).

  2. R. Beals, J. Handwerk, and B. Wrona, “Behavior of urania-rare-earth oxides at high temperatures,” J. Amer. Ceram. Soc., 52, No. 11, 578–581 (1969).

    Article  Google Scholar 

  3. L. Grossman, D. Packard, and H. Hill, “(U, Gd)O2.00 phase equilibria at high temperatures,” Colloq. Int. CNRS, No. 205, 453–458 (1972).

    Google Scholar 

  4. T. Wada, K. Noro, and K. Tsukui, “Behavior of UO2–GdO3 fuel,” in: Proc. Int. Conf. BNES on Nuclear Fuel Performance, (1973), pp. 63.1–63.3.

  5. A. Chotard, P. Melin, M. Bruet, and R. Francois, “Out of pile physical properties and in pile thermal conductivity of (U, Gd)O2” in: IWGFPT’26 (1986), p. 77–86.

  6. S. Yamanouchi, T. Tachibana, K. Tsukui, and M. Oguma, “Melting temperature of irradiated UO2 and UO2–2wt%Gd2O3 fuel pellets up to burnup of about 30 GWd/tU,” J. Nucl. Sci. Techn., 25, No. 6, 538–533 (1988).

    Article  Google Scholar 

  7. M. Matsuoka, “UO2–d3O3 fuel,” in: Proc. of Fall Meeting of the Atomic Energy Society of Japan (1990), pp. 679–683.

  8. Y. Yamada, H. Matsuda, and M. Yoshimura, “Melting and measurements of solidification point of UO2–Gd2O solid solutions under solar furnace,” Koo Gakkaishi, 25, No. 2, 71–79 (1999).

    Google Scholar 

  9. K. Kang, J. Yang, and J. Kim, “The solidus and liquidus temperatures of UO2–Gd2O3 and UO2–Er2O3 fuels,” Thermochim. Acta, 455, 134–137 (2007).

    Article  Google Scholar 

  10. M. Adamson, E. Aitken, and R. Caputi, “Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels,” J. Nucl. Mater., 130, 340–365 (1985).

    Google Scholar 

  11. R. Beals and J. Handwerk, “Sold solutions in system urania–rare-earth oxides: I, UO2–GdO1.5,” J. Amer. Ceram. Soc., 48, No. 5, 271–274 (1965).

    Article  Google Scholar 

  12. S. Popov and V. Proselkov, “Thermodyamic assessment of solidus and liquidus of urania-gadolinia fuels,” in: Proc. of Top Fuel 2009, Paris, France, Sep. 6–10, 2009, Paper 2150.

  13. S. G. Popov, V. A. Lysenko, and V. N. Proselkov, “Thermodynamic analysis of the stability of uranium-gadolinium fuel at high temperatures,” Preprint IAE-6630/4 (2010).

  14. N. V. Lyalyushkin, R. F. Melkaya, Yu. F. Volkov, et al., “Synthesis and study of solid solutions in the UO2–Gd2O3 system,” Preprint NIIAR-10(837) (1992).

  15. M. Durazzo, F. Oliveiara, E. Carvalho, and H. Riella, “Phase studies in the UO2–Gd2O3 system,” J. Nucl. Mater., 400, 183–188 (2010).

    Article  ADS  Google Scholar 

  16. Y. Chang, “Phase diagram calculations in teaching, research, and industry,” Metall. Mater. Trans. B, 37, No. 1, 7–39 (2006).

    Article  Google Scholar 

  17. A. Silva, J. Agren, and M. Clavaguera-Mora, “Application of computational thermodynamic – the extension from phase equilibrium to phase transformations and other properties,” Calphad., 31, No. 1, 53–74 (2007).

    Article  Google Scholar 

  18. Y. Li, C. Wang, and X. Liu, “Thermodynamic assessments of binary phase diagrams in organic and polymeric systems,” ibid., 33, No. 2, 415–419 (2009).

    Google Scholar 

  19. M. Temkin, “Mixtures of fused salts as ionic solutions,” Zh. Fiz. Khim., 33, No. 2, 415–419 (2009).

    Google Scholar 

  20. G. Gueneau, M. Baichi, D. Labroche, et al., “Thermodynamic assessment of the uranium-oxygen system,” J. Nucl. Mater., 304, 161–171 (2002).

    Article  ADS  Google Scholar 

  21. J. Coutures and M. Rand, “Melting temperatures of refractory oxides: Part II. Lanthanoid sesquioxides,” Pure Appl. Chem., 61, No. 8, 1461–1482 (1989).

    Article  Google Scholar 

  22. M. Zinkevich, “Thermodynamics of rare-earth sesquioides,” Progress Mater. Sci., 52, 597–647 (2007).

    Article  Google Scholar 

  23. I. Ansara, “Comparison of methods for thermodynamic calculation of phase diagrams,” Intern. Metals Rev., No. 1, 20–53 (1979).

  24. A. Ravindran, G. Reklaitis, and G. Ragsdale, Engineering Optimization: Methods and Applications [Russian translation], Mir, Moscow (1986), Vol. 1.

    Google Scholar 

  25. M. Foex and J. Traverse, “Remarques sur les transformations cristallines presentees a haute temperature par les sesquioxydes de terres rares,” Rev. Int. Hautes Temper. Refract., 3, No. 4, 429–453 (1966).

    Google Scholar 

  26. M. Mizuno and T. Yamada, “Solidification point measurements of lanthanide oxides with a solar furnace,” Nagoya Kogyo Gijutsu Shikensho Hokoku, 34, No. 7, 222–28 (1985).

    Google Scholar 

  27. A. Shevthenko and L. Lopato, “TA method application to the highest refractory oxide systems investigation,” Thermochim. Acta, 93, 537–540 (1985).

    Article  Google Scholar 

  28. G. T. Adylov and L. M. Sigalov, “High-temperature studies of RE sesquioxides by thermal analysis in air,” Dokl. Akad. Nauk Uzbek. SSR, No. 3, 33–36 (1988).

    Google Scholar 

  29. A. Grundy, B. Hallstedt, and L. Gauckler, “Thermodynamic assessment of the lanthanum-oxygen system,” J. Phase Equilib., 22, No. 2, 105–113 (2001).

    Article  Google Scholar 

  30. L. Barkhatov, L. Zhmakin, D. Kagan, el al., “The electric conductivity and heats of high-temperature phase transition of gadolinia,” High Temp. – High Press., 13, No. 1, 39–42 (1981).

    Google Scholar 

  31. D. Balestrieri, A Study of the UO 2 /Gd 2 O 3 Composite Fuel, IAEA-TECDOC-1036, IAEA,Vienna (1998), pp. 63–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 110, No. 4, pp. 188–194, April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, S.G., Proselkov, V.N. & Lysenko, V.A. Thermodynamic analysis of uranium–gadolinium fuel stability at high temperatures. At Energy 110, 221–229 (2011). https://doi.org/10.1007/s10512-011-9415-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-011-9415-3

Keywords

Navigation