Skip to main content
Log in

Analysis of Emission Line Widths of [CII] 158μm

  • Published:
Astrophysics Aims and scope

A study of [CII] 158 μm emission line profiles observed with Herschel PACS for 379 galaxies is presented. Emission line widths are compared to [CII] luminosities, to near-infrared 1.6 μm luminosities and to infrared 22 μm luminosities to decide if any luminosity relates to velocity dispersion. Archival data for [CII] fluxes and line profiles are taken from http://cassis.sirtf.com/herschel/. Line profiles are classified as Gaussian, flattened and asymmetric. H magnitudes are taken from 2MASS catalogues, and 22 μm fluxes from the WISE catalogue. These luminosities are compared to [CII] line Full Width Half Maximum. Asymmetric profiles are not primarily AGN, which indicates that asymmetries are not produced primarily by outflows from the nuclear region. [CII] line widths do not show a significant correlation with any measure of galaxy luminosity. The correlation having smallest dispersion is with the H band luminosity for which L(H) ~ FWHM0.73, which is a much flatter correlation than the L ~ FWHM4 previously found for optical emission lines or stellar velocity dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Stacey, N. Geis, R. Genzel et al., Astrophys. J., 373, 423, 1991.

    Article  ADS  Google Scholar 

  2. S. Malhotra, G. Helou, G. Stacey et al., Astrophys. J., 491, L27, 1997.

    Article  ADS  Google Scholar 

  3. T. Nikola, R. Genzel, F. Herrmann et al., Astrophys. J., 504, 749, 1998.

    Article  ADS  Google Scholar 

  4. M. L. Luhman, S. Satyapal, J. Fischer et al., Astrophys. J., 594, 758, 2003.

    Article  ADS  Google Scholar 

  5. J. R. Brauher, D. A. Dale, G. Helou, Astrophys. J. Suppl. Ser., 178, 280, 2008.

    Article  ADS  Google Scholar 

  6. A. G. G. M. Tielens, D. Hollenbach, Astrophys. J., 291, 722, 1985.

    Article  ADS  Google Scholar 

  7. G. Helou, S. Malhotra, D. J. Hollenbach et al., Astrophys. J., 548, L73, 2001.

    Article  ADS  Google Scholar 

  8. S. Malhotra, M. J. Kaufman, D. Hollenbach et al., Astrophys. J., 561, 766, 2001.

    Article  ADS  Google Scholar 

  9. R. Meijerink, M. Spaans, F. P. Israel, Astron. Astrophys., 461, 793, 2007.

    Article  ADS  Google Scholar 

  10. L. Sargsyan, V. Lebouteiller, D. Weedman et al., Astrophys. J., 755, 171, 2012

    Article  ADS  Google Scholar 

  11. D. Farrah, V. Lebouteiller, H. W. W. Spoon et al., Astrophys. J., 776, 38, 2013.

    Article  ADS  Google Scholar 

  12. T. Díaz-Santos, L. Armus, V. Charmandaris et al., Astrophys. J., 774, 68, 2013.

    Article  ADS  Google Scholar 

  13. L. Sargsyan, A. Samsonyan, V. Lebouteiller et al., Astrophys. J., 790, 15, 2014.

    Article  ADS  Google Scholar 

  14. I. De Looze, D. Cormier, V. Lebouteiller et al., Astron. Astrophys., 568, A62, 2014.

    Article  Google Scholar 

  15. T. Díaz-Santos, L. Armus, V. Charmandaris et al., Astrophys. J., 788, 17, 2014.

    Article  Google Scholar 

  16. A. Poglitsch, C. Waelkens, N. Geis et al., Astron. Astrophys., 518, L2, 2010.

    Article  ADS  Google Scholar 

  17. G. L. Pilbratt, J. R. Riedinger, T. Passvogel et al., Astron. Astrophys., 518, L1, 2010.

    Article  ADS  Google Scholar 

  18. L. Sargsyan, D. Weedman, V. Lebouteiller et al., Astrophys. J., 730, 19, 2011.

    Article  ADS  Google Scholar 

  19. J. R. Houck, T. L. Roellig, J. van Cleve et al., Astrophys. J. Suppl. Ser., 154, 18, 2004.

    Article  ADS  Google Scholar 

  20. M. W. Werner, T. L. Roellig, F. J. Low et al., Astrophys. J. Suppl. Ser., 154, 1, 2004.

    Article  ADS  Google Scholar 

  21. A. Samsonyan, D. Weedman, V. Lebouteiller et al., Astrophys. J. Suppl. Ser., 226, 11, 2016.

    Article  ADS  Google Scholar 

  22. M. F. Skrutskie, R. M. Cutri, R. Stiening et al., Astron. J., 131, 1163, 2006.

    Article  ADS  Google Scholar 

  23. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer et al., Astron. J., 140, 1868, 2010.

    Article  ADS  Google Scholar 

  24. E. L. Wright, Publ. Astron. Soc. Pacif., 118, 1711, 2006.

    Article  ADS  Google Scholar 

  25. C. H. Nelson, M. Whittle, Astrophys. J., 465, 96, 1996.

    Article  ADS  Google Scholar 

  26. F. R. Feldman, D. W. Weedman, V. A. Balzano et al., Astrophys. J., 256, 427, 1982.

    Article  ADS  Google Scholar 

  27. M. Whittle, Astrophys. J., 387, 121, 1992.

    Article  ADS  Google Scholar 

  28. G. A. Shields, K. Gebhardt, S. Salviander et al., Astrophys. J., 583, 124, 2003.

    Article  ADS  Google Scholar 

  29. S. M. Faber, R. E. Jackson, Astrophys. J., 204, 668, 1976.

    Article  ADS  Google Scholar 

  30. J. Kormendy, L. C. Ho, ARA&A, 51, 511, 2013.

    Article  ADS  Google Scholar 

  31. N. J. McConnell, C. -P. Ma, Astrophys. J., 764, 184, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Samsonyan.

Additional information

Published in Astrofizika, Vol. 65, No. 2, pp. 167-177 (May 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonyan, A.L. Analysis of Emission Line Widths of [CII] 158μm. Astrophysics 65, 151–160 (2022). https://doi.org/10.1007/s10511-022-09728-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09728-0

Keywords

Navigation