Skip to main content
Log in

Long-term evolution of the X-ray flux of the Crab pulsar

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

In order to carry out in-orbit calibration, the hard X-ray modulation telescope satellite (HXMT) has made a number of observations of Crab pulsar. We study the long-term evolution of the X-ray flux of the Crab pulsar with these observational data.

Methods

We use nearly four years Crab pulsar’s data obtained by HXMT and the neutron star interior composition of explorer to test whether \(L_\textrm{x} \propto L_\textrm{sd}^{\alpha }\) holds for an individual pulsar, where \(L_\textrm{x}\) is the pulsed X-ray luminosity and \(L_\textrm{sd}\) is its spin-down luminosity. We also combine the earlier results obtained with PCA and HEXTE data (Yan et al. in ApJ 865:21, 2018) to get the long-term evolution characteristics of the Crab pulsar.

Results

We find the X-ray flux evolution can be fitted by a linear correlation: \(L_\textrm{x} \propto L_\textrm{sd}^{1.42\pm 0.18}\). In soft X-ray energy band (1–10 keV) and hard X-ray energy band (27–250 keV), \(\alpha \) does not change significantly with either energy or phase. However, this will need to be confirmed in future. For example, the interpulse component of hard X-ray may follow \(L_\textrm{x}\propto L_\textrm{sd}^{0.96\pm 0.34}\), which may be different from the correlation of soft X-rays and main pulse component. On the other hand, the hard X-ray flux evolution shows that the performance of high energy X-ray telescope (HE) onboard HXMT, such as effective area, is stable.

Conclusion

We conclude that the X-ray luminosity of the Crab pulsar closely correlates with its spin-down luminosity. However, the emission mechanism responsible for these phenomena remains not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.jb.man.ac.uk/pulsar/crab.html.

References

  1. F.D. Seward, Z.R. Wang, ApJ 332, 199 (1988)

    Article  ADS  Google Scholar 

  2. W. Becker, J. \(Tr\ddot{u}\)mper, A &A 326, 682 (1997)

  3. Y. Saito, Ph.D. Thesis, Univ. of Tokyo (S98) (1998)

  4. A. Possenti, R. Cerutti, M. Colpi, S. Mereghetti, A &A 387, 993 (2002)

    ADS  Google Scholar 

  5. K.S. Cheng, R.E. Taam, W. Wang, ApJ 617, 480 (2004)

    Article  ADS  Google Scholar 

  6. X.H. Li, F.J. Lu, Z. Li, ApJ 682, 1166 (2008)

    Article  ADS  Google Scholar 

  7. O. Kargaltsev, M. Durant, G. Pavlov, G. Garmire, ApJS 201, 37 (2012)

    Article  ADS  Google Scholar 

  8. L.L. Yan, M.Y. Ge, F.J. Lu et al., ApJ 865, 21 (2018)

    Article  ADS  Google Scholar 

  9. W. Becker, ASSL 357, 91–141 (2009)

  10. S.N. Zhang, T.P. Li, F.J. Lu et al., Sci. China. Phys. Mech. Astron. 63(4), 249502 (2020)

    Article  ADS  Google Scholar 

  11. C.Z. Liu, Y.F. Zhang, X.F. Li, et al., Sci. China Phys. Mech. Astron. 63(4), 249503 (2020)

  12. X.L. Cao, W.C. Jiang, B. Meng, et al., Sci. China Phys. Mech. Astron. 63(4), 249504 (2020)

  13. Y. Chen, W.W. Cui, W. Li, et al., Sci. China, Phys. Mech. Astron. 63(4), 249505 (2020)

  14. X.B. Li, X.F. Li, Y. Tan et al., JHEAP 27, 64 (2020)

    ADS  Google Scholar 

  15. A.G. Lyne, R.S. Pritchard, F.G. Smith, MNRAS 265, 1003 (1993)

    Article  ADS  Google Scholar 

  16. M. Vivekanand, A &A 649, A140 (2021)

    Google Scholar 

  17. M.Y. Ge, F.J. Lu, J.L. Qu et al., ApJS 199, 32 (2012)

    Article  ADS  Google Scholar 

  18. L.L. Yan, Y.L. Tuo, M.Y. Ge et al., ApJ 928, 183 (2022)

    Article  ADS  Google Scholar 

  19. V. Trimble, PASP 85, 579 (1973)

    Article  ADS  Google Scholar 

  20. M.Y. Ge, L.L. Yan, F.J. Lu et al., ApJ 818, 48 (2016)

    Article  ADS  Google Scholar 

  21. K.K. Madsen, F.A. Harrison, C.B. Markwardt et al., ApJSS 220, 8 (2015)

    Article  ADS  Google Scholar 

  22. K.K. Madsen, K. Forster, B. Grefenstette et al., JATIS 8(3), 034003 (2022)

    ADS  Google Scholar 

  23. T. Kouzu, M.S. Tashiro, Y. Terada et al., PASJ 65, 74 (2013)

    Article  ADS  Google Scholar 

  24. C.C. Wilson-Hodge, M.L. Cherry, G.L. Case et al., ApJ 727, L40 (2011)

    Article  ADS  Google Scholar 

  25. S.N. Zhang, Y. Xie, APJ 761, 102 (2012)

    Article  ADS  Google Scholar 

  26. S.X. Yi, S.N. Zhang, MNRAS 454, 3674–3678 (2015)

    Article  ADS  Google Scholar 

  27. J.K. Daugherty, A.K. Harding, ApJ 458, 278 (1996)

    Article  ADS  Google Scholar 

  28. K.S. Cheng, C. Ho, M. Ruderman, ApJ 500, 522 (1986)

    Article  ADS  Google Scholar 

  29. R.W. Romani, ApJ 470, 469 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work used data from the Insight-HXMT mission, a project funded by the China National Space Administration (CNSA) and the Chinese Academy of Sciences (CAS). We gratefully acknowledge the support from the National Program on Key Research and Development Project (Grant No. 2021YFA0718500) from the Minister of Science and Technology of China (MOST). The authors thank supports from the National Natural Science Foundation of China under Grants U1938102, 12273043, U1838201, U1838202, U1938109 and U1938108. This work was partially supported by International Partnership Program of Chinese Academy of Sciences (Grant No. 113111KYSB20190020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ming Song.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, HS., Ge, MY., Li, XB. et al. Long-term evolution of the X-ray flux of the Crab pulsar. Radiat Detect Technol Methods 7, 48–55 (2023). https://doi.org/10.1007/s41605-023-00392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-023-00392-2

Keywords

Navigation