Skip to main content
Log in

Temperature of Dust in Hot Plasmas

  • Published:
Astrophysics Aims and scope

The thermal regime and emission characteristics of dust in hot plasmas (T=10 6 -10 7 K) in outer space are studied. These plasmas are encountered everywhere in the galactic interstellar medium, as well as in circumgalactic and intergalactic space. Despite the hostile environment, dust particles can survive in them for a limited time, ~0.3n -1 million years, where n is the plasma density, and can be studied in the infrared. This provides an additional possibility for diagnostics of the hot plasma. The distinctive feature of the thermal regime of dust particles imbedded in a rarefied hot plasma is that they experience temperature fluctuations over a wide range. The temperature distribution function depends on the radius of the dust grains and on the plasma parameters. Here the temperature distribution functions for dust particles with radii from 30-3000 Å and an array of plasma parameters are described, along with the resulting emission spectra. It is shown that over a wide range of plasma temperatures and densities, the dust emission spectrum has a “bimodal” shape (with two peaks) that could resemble the spectrum of a dust population with two temperatures. Possible errors in determining the mass of dust from observations of its thermal emission based on the assumption that it has an “equilibrium” temperature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Indebetouw, et al., Astrophys. J. Lett. 782, L2 (2014).

    Article  ADS  Google Scholar 

  2. N. Rangwala, P. R. Maloney, J. Glenn, et al., Astrophys. J. 743, 94 (2011).

    Article  ADS  Google Scholar 

  3. E. da Cunha, F. Walter, I. R. Smail, et al., Astrophys. J. 806, 110 (2015).

    Article  ADS  Google Scholar 

  4. L. Fan, Y. Han, R. Nikutta, et al., Astrophys. J. 823, 107 (2016).

    Article  ADS  Google Scholar 

  5. Yu. Shchekinov and E. Vasiliev, Astrophysics 60, 449 (2017).

    Article  ADS  Google Scholar 

  6. Planck collaboration: A. Abergel, P. A. R. Ade, N. Aghanim, et al., Astron. Astrophys. 571, A11 (2014).

    Article  Google Scholar 

  7. Yu. Shchekinov, Galaxies 6, 62 (2018).

    Article  ADS  Google Scholar 

  8. E. O. Vasiliev, B. B. Nath, and Yu. A. Shchekinov, Mon. Not. Roy. Astron. Soc. 446, 1703 (2015).

    Article  ADS  Google Scholar 

  9. M. Li, J. P. Ostriker, R. Cen, et al., Astrophys. J. 814, 4 (2015).

    Article  ADS  Google Scholar 

  10. J. Tumlinson, M. S. Peeples, and J. K. Werk, Ann. Rev. Astron. Astrophys. 55, 389 (2017).

    Article  ADS  Google Scholar 

  11. B. Ménard, R. Scranton, M. Fukugita, et al., Mon. Not. Roy. Astron. Soc. 405, 1025 (2010).

    ADS  Google Scholar 

  12. K. Yamada and T. Kitayama, Publ. Astron. Soc. Japan, 57, 611 (2005).

    Article  ADS  Google Scholar 

  13. J. M. Greenberg, in: B. M. Middlehurst and L. H. Aller, ed., Stars and Stellar Systems, Univ. of Chicago Press 7, 221 (1968).

  14. B. T. Draine and N. Anderson, Astrophys. J. 292, 494 (1985).

    Article  ADS  Google Scholar 

  15. E. Dwek, Astrophys. J. 607, 848 (2004).

    Article  ADS  Google Scholar 

  16. E. Dwek, Astrophys. J. 302, 363 (1986).

    Article  ADS  Google Scholar 

  17. E. Dwek and R. G. Arendt, Ann. Rev. Astron. Astrophys. 30, 11 (1992).

    Article  ADS  Google Scholar 

  18. P. Guhathakurta and B. T. Draine, Astrophys. J. 345, 230 (1989).

    Article  ADS  Google Scholar 

  19. M. Bocchio, A. P. Jones, L. Verstraete, et al., Astron. Astrophys. 556, A6 (2013).

    Article  Google Scholar 

  20. E. Dwek and M. W. Werner, Astrophys. J. 248, 138 (1981).

    Article  ADS  Google Scholar 

  21. S. Drozdov, Bulletin of the Lebedev Physical Institute, in press (2019).

    Google Scholar 

  22. E. Krügel, The Physics of Interstellar Dust, IoP Publishing, Bristol and Philadelphia (2003).

    Book  Google Scholar 

  23. J. I. Davies, S. Bianchi, L. Cortese, et al., Mon. Not. Roy. Astron. Soc. 419, 3505 (2012).

    Article  ADS  Google Scholar 

  24. C. Fuller, J. I. Davies, M. W. L. Smith, et al., Mon. Not. Roy. Astron. Soc. 458, 582 (2016).

    Article  ADS  Google Scholar 

  25. S. Eales, M. W. L. Smith, R. Auld, et al., Astrophys. J. 761, 168 (2012).

    Article  ADS  Google Scholar 

  26. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    Article  ADS  Google Scholar 

  27. M. Compiègne, L. Verstraete, A. Jones, et al., Astron. Astrophys. 525, A103 (2011).

    Article  Google Scholar 

  28. T. Temim and E. Dwek, Astrophys. J. 774, 8 (2013).

    Article  ADS  Google Scholar 

  29. P. Camps, K. Musselt, S. Bianchi, et al., Astron. Astrophys. 580, A87 (2015).

    Article  Google Scholar 

  30. R. H. Hildebrand, Quater. J. R. A. S. 24, 267 (1983).

    ADS  Google Scholar 

  31. G. Helou, IAU Symp. 135, 285 (1980).

    ADS  Google Scholar 

  32. B. T. Draine, Astrophys. J. 245, 880 (1981).

    Article  ADS  Google Scholar 

  33. B. T. Draine, Physics of the Interstellar and Intergalactic Medium, Princeton University Press, Princeton and Oxford (2011).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Drozdov.

Additional information

Translated from Astrofizika, Vol. 62, No. 4, pp. 605-621 (November 2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, S.A., Shchekinov, Y.A. Temperature of Dust in Hot Plasmas. Astrophysics 62, 540–555 (2019). https://doi.org/10.1007/s10511-019-09603-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09603-5

Keywords

Navigation