Skip to main content
Log in

Hot Dust in Ultraluminous Infrared Galaxies

  • Published:
Astrophysics Aims and scope

Ultraluminous infrared galaxies with total luminosities an order of magnitude greater than that of our galaxy over wavelengths of λλ = 10-800 μm are characterized by a high mass concentration of dust. Because of this, the optical thickness of the interstellar gas is extremely high, especially in the central regions of the galaxies, ranging from 1 at millimeter wavelengths to 104 in the visible. The average temperature of the dust in them is about Td=30 K, but the variations from one galaxy to another are large, with Td=20-70 K. The main source of dust in these galaxies seems to be type II supernova bursts and the main heating source is stars. In addition, given that shock waves from supernovae are an effective mechanism for destruction of interstellar dust in our galaxy and the high optical thickness of the gas with respect to the heating radiation from the stars, this conclusion merits detailed analysis. This paper provides estimates of the dust mass balance and details of its heating in these galaxies based on the example of the ultraluminous galaxy closest to us, Arp 220. It is shown that when supernovae are dominant in the production and destruction of dust in the interstellar gas, the resultant dust mass fraction is close to the observed value for Arp 220. It is also found that the observed stellar population of this galaxy can support a high ( Td ≃ 67 K ) temperature if the dust in its central region is concentrated in small, dense (n~105 cm-3) clouds with radii of 0.003 ≲ pc. Mechanisms capable of maintaining an interstellar gas structure in this state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lagache, J.-L. Puget, and H. Dole, Ann. Rev. Astron. Astrophys. 43, 727 (2005).

    Article  ADS  Google Scholar 

  2. C. M. Casey, D. Narayanan, and A. Cooray, Physics Rept, 541, 45 (2014).

    Article  ADS  Google Scholar 

  3. Y. Toba and T. Nagao, Astrophys. J. 820, 46 (2016).

    Article  ADS  Google Scholar 

  4. Ch.-W. Tsai, P. R. M. Eisenhard, J. Wu, et al., Astrophys. J. 805, 90 (2015).

    Article  ADS  Google Scholar 

  5. U. Vivian, D. B. Sanders, J. M. Mazzarella, et al., Astrophys. J. Suppl. 203, 9 (2012).

    Article  ADS  Google Scholar 

  6. B. T. Draine, Ann. Rev. Astr. Astrophys. 41, 241 (2003).

    Article  ADS  Google Scholar 

  7. L. Dunne, S. Eales, R. Ivison, et al., Nature, 426, 285 (2003).

    Article  ADS  Google Scholar 

  8. T. Temim and E. Dwek, Astrophys. J. 774, 8 (2013).

    Article  ADS  Google Scholar 

  9. R. Indebetouw, M. Matsuura, E. Dwek, et al., Astrophys. J. 782, L2 (2014).

    Article  ADS  Google Scholar 

  10. P. J. Owen and M. J. Barlow, Astrophys. J. 801, 141 (2015).

    Article  ADS  Google Scholar 

  11. M. Persic and Y. Rephaeli, Mon. Not. Roy. Astron. Soc. 403, 1569 (2010).

    Article  ADS  Google Scholar 

  12. Y. Rephaeli and M. Persic, Astrophys. Space Sci. Proc. 34, 193 (2013).

    Article  ADS  Google Scholar 

  13. N. Rangwala, P. R. Maloney, C. D. Wilson, et al., Astrophys. J. 806, 17 (2015).

    Article  ADS  Google Scholar 

  14. N. Rangwala, P. R. Maloney, J. Glenn, et al., Astrophys. J. 743, 94 (2011).

    Article  ADS  Google Scholar 

  15. N. Z. Scoville, M. S. Yun, and P. N. Bryant, Astrophys. J. 484, 702 (1997).

    Article  ADS  Google Scholar 

  16. C. Wilson, W. Harris, R. Longden, et al., Astrophys. J. 641, 763 (2006).

    Article  ADS  Google Scholar 

  17. J. Rodríguez Zaurín, C. N. Tadhunter, and R. N. Gonzáles Delgado, Mon. Not. Roy. Astron. Soc. 384, 875 (2008).

    Article  ADS  Google Scholar 

  18. J. P. Emerson, P. E. Clegg, G. Gee, et al., Nature, 311, 237 (1989).

    Article  ADS  Google Scholar 

  19. G. Miller and J. Scalo, Astrophys. J. Suppl. 41, 513 (1979).

    Article  ADS  Google Scholar 

  20. H. J. G. L. M. Lamers, and J. P. Cassinelli, Introduction to Stellar Winds, CUP, Cambridge (1997).

  21. N. Scoville and B. Soifer, in: C. Leitherer, N. Walborn, T. Heckman, and C. Norman, eds., Massive Stars in Starbursts, CUP, Cambridge (1991), p. 233.

  22. R. Indebetouw, et al., Astrophys. J. 782, L2 (2014).

    Article  ADS  Google Scholar 

  23. B. T. Draine and E. E. Salpeter, Astrophys. J. 231, 438 (1979).

    Article  ADS  Google Scholar 

  24. A. P. Jones, A. G. G. M. Tielens, D. J. Hollenbach, et al., Astrophys. J. 433, 797 (1994).

    Article  ADS  Google Scholar 

  25. B. T. Draine, Astron. Soc. Pac. 414, 453 (2009).

    ADS  Google Scholar 

  26. E. O. Vasiliev, B. B. Nath, and Yu. A. Shchekinov, Mon. Not. Roy. Astron. Soc. 446, 1703 (2015).

    Article  ADS  Google Scholar 

  27. E. O. Vasiliev, Yu. A. Shchekinov, and B. B. Nath, Mon. Not. Roy. Astron. Soc. 468, 2757 (2017).

    Article  ADS  Google Scholar 

  28. B. B. Nath and Yu. A. Shchekinov, Astrophys. J. 777, L12 (2013).

    Article  ADS  Google Scholar 

  29. V. V. Korolev, E. O. Vasiliev, I. G. Kovalenko, et al., Astron. Rep. 59, 690 (2015).

    Article  ADS  Google Scholar 

  30. C. F. McKee, in: L. J. Allamandola and A. G. G. M. Tielens, eds., Interstellar Dust, IAUS, 135, 431 (1989).

  31. A. Paggi, G. Fabbiano, G. Risaliti, et al., Astrophys. J. 841, 44 (2017).

    Article  ADS  Google Scholar 

  32. E. O. Vasiliev, Mon. Not. Roy. Astron. Soc. 414, 3145 (2011).

    Article  ADS  Google Scholar 

  33. K. R. Anantharamaiah, F. Viallefond, N. R. Mohan, et al., Astrophys. J. 537, 613 (2000).

    Article  ADS  Google Scholar 

  34. S. Martin, S. Aalto, K. Sakamoto, et al., Astron. Astrophys. 590, 25 (2016).

    Article  Google Scholar 

  35. K. Sakamoto, J. Wang, M. C. Wiedner, et al., Astrophys. J. 684, 957 (2008).

    Article  ADS  Google Scholar 

  36. E. Varenius, J. E. Convay, F. Batejat, et al., Astron. Astrophys. in press, arxiv:1702. 04772 (2017).

  37. L. Barcos-Muñoz, A. K. Leroy, A. S. Evans, et al., Astrophys. J. 799, 10 (2015).

    Article  ADS  Google Scholar 

  38. F. Batejat, J. E. Conway, R. Harler, et al., Astrophys. J. 740, 95 (2011).

    Article  ADS  Google Scholar 

  39. R. H. Hildebrand, Quart. J. Roy. Astron. Soc. 24, 267 (1983).

    ADS  Google Scholar 

  40. A. Li and B. T. Draine, Astrophys. J. 554, 778 (2001).

    Article  ADS  Google Scholar 

  41. L. D. Anderson, A. Zavagno, L. Deharveng, et al., Astron. Astrophys. 542, 10 (2012).

    Article  Google Scholar 

  42. Ph. André, A. Men’shchikov, S. Bontemps, et al., Astron. Astrophys. 518, L102 (2010).

    Article  ADS  Google Scholar 

  43. D. Arzoumanian, Ph. André, P. Didelon, et al., Astron. Astrophys. 529, L6 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shchekinov.

Additional information

Translated from Astrofizika, Vol. 60, No. 4, pp. 487-502 (November 2017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchekinov, Y.A., Vasiliev, E.O. Hot Dust in Ultraluminous Infrared Galaxies. Astrophysics 60, 449–461 (2017). https://doi.org/10.1007/s10511-017-9498-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-017-9498-1

Keywords

Navigation