Skip to main content
Log in

Measurement of the Polytropic Index During Solar Coronal Rain Using a Diagram of the Electron Density Distribution as a Function of Electron Temperature

  • Published:
Astrophysics Aims and scope

A differential emission measure (DEM) method is used to evaluate the relationship of the electron density and temperature before and after a coronal rain event during an active sun over the period from 20:10 UT on October 6 to 02:10 on October 7, 2011. Observational data were obtained from SDO/AIA for six different extreme ultraviolet (EUV) spectral lines. 240 different coronal loops were analyzed during this time interval, and the average electron density and temperature were obtained using 171 Å Fe IX) and 193 Å (Fe XII) filters. The relationship between the density and temperature made it possible to estimate the polytropic index in the solar corona before and after the coronal rain. The polytropic index after termination of the coronal rain was estimated to be γ = 1.3±0.06, Which shows usual thermodynamic properties of study-state coronal plasma. The polytropic index at the time of onset of the coronal rain was, however, estimated to be γ = 2.1±0.11, which indicates an unstable thermodynamic process, i.e., a thermal instability. It is suggested that the coronal rain is the result of an unstable process, and the coronal plasma returns its stable state after the rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Antiochos, P. J. MacNeice, D. S. Spicer, et al., Astrophys. J. 512, 985 (1999).

    Article  ADS  Google Scholar 

  2. P. Antolin, K. Shibata, and G. Vissers, Astrophys. J. 716, 154 (2010, P. Antolin, E. Verwichte, Astrophys. J. 736, 121 (2011).

  3. P. Antolin and L. Rouppe van der Voort, Astrophys. J. 745, 152 (2012).

    Article  ADS  Google Scholar 

  4. P. Antolin, G. Vissers, and L. Rouppe van der Voort, Sol. Phys. 280, 457 (2012).

    Article  ADS  Google Scholar 

  5. G. B. Field, Astrophys. J. 142, 531 (1965).

    Article  ADS  Google Scholar 

  6. E. N. Parker, Astrophys. J. 117, 431 (1953).

    Article  ADS  Google Scholar 

  7. C. J. Schrijver, Solar Phys. 198, 325 (2001).

    Article  ADS  Google Scholar 

  8. K. Murawski, T. V. Zaqarashvili, and V. M. Nakariakov, Astron. Astrophys. 533, A18, 5 (2011).

    Google Scholar 

  9. T. Van Doorsselaere, N. Wardle, G. Del Zanna, et al., ApJL, 727:L32 (4pp) (2011).

    Google Scholar 

  10. A. Fludra and J. Sylwester, Solar Phys. 105, 323 (1986).

    Article  ADS  Google Scholar 

  11. J. W. Brosius, J. M. Davila, R. J. Thomas, et al., Astrophys. J. Suppl. 106, 143 (1996).

    Article  ADS  Google Scholar 

  12. V. Kashyap and J. J. Drake, Astrophys. J. 503, 450 (1998).

    Article  ADS  Google Scholar 

  13. M. J. Aschwanden and L. W. Acton, Astrophys. J. 550, 475 (2001).

    Article  ADS  Google Scholar 

  14. M. J. Aschwanden and P. Boerner, Astrophys. J. 732, 81 (2011).

    Article  ADS  Google Scholar 

  15. M. JAschwanden, P. Boerner, C. J. Schrijver, et al., Solar Phys. 283:5-30 (2013).

    Article  ADS  Google Scholar 

  16. M. J. Aschwanden and R. W. Nightingale, Elementary loop structures in the solar corona analyzed 387 from TRACE triple-filter images. Astrophys. J. 633, 499-517 (2005).

    Article  ADS  Google Scholar 

  17. M. J. Aschwanden and C. J. Schrijver, Astrophys. J. Suppl. 142, 269 (2002).

    Article  ADS  Google Scholar 

  18. M. J. Aschwanden, Physics of the Solar Corona (Praxis/Springer, Chichester/New York) (2004).

    Google Scholar 

  19. M. J. Aschwanden, Sol. Phys. 262, 235 (2010a).

    Article  ADS  Google Scholar 

  20. M. J. Aschwanden, Sol. Phys. 262, 399 (2010b).

    Article  ADS  Google Scholar 

  21. M. J. Aschwanden, Sol. Phys. 262, 399 (2010).

    Article  ADS  Google Scholar 

  22. M. JAschwanden, Sol. Phys. 283:5-30 DOI https://doi.org/10.1007/s11207-011-9876-5 (2013).

    Article  ADS  Google Scholar 

  23. J. R. Lemen, A. M. Title, D. J. Akin, et al., Sol. Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  24. Z. Vashalomidze, V. Kukhianidze, T. V. Zaqarashvili, et al., Astron. Astrophys. 577, id. A136 (2015).

  25. R. Rosner, W. H. Tucker, and G. S. Vaiana, Astrophys. J. 220, 643 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Vashalomidze.

Additional information

Translated from Astrofizika, Vol. 62, No. 1, pp. 85-95 (February 2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashalomidze, Z.M., Zaqarashvili, T.V. & Kukhianidze, V.D. Measurement of the Polytropic Index During Solar Coronal Rain Using a Diagram of the Electron Density Distribution as a Function of Electron Temperature. Astrophysics 62, 69–78 (2019). https://doi.org/10.1007/s10511-019-09565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09565-8

Keywords

Navigation