Skip to main content
Log in

Supernova Remnants in the Hα and Hβ Lines

  • Published:
Astrophysics Aims and scope

Three-dimensional gas-dynamic calculations of the evolution of supernova remnants are used to study the evolution of the emission in the Hα and Hβ recombination lines and the dispersion in the velocities of the ionized gas. The influence of variations in the abundances of chemical elements, in particular, iron, on the thermal and dynamic evolution of a supernova remnant is examined. It is found that the velocity dispersion of the gas in the shell of a young remnant varies over a wide range: essentially from zero to ~100-120 km/s, with a maximum value that decreases with time. Variation in the abundance of iron by ±0.5 dex in a gas with the solar abundance of other elements leads to a change in the thermal structure of a supernova shell and a proportionate change in the intensity of the Hα line emission. The recombination line intensity ratio I(Hα)/I(Hβ) decreases as a remnant ages, so it can serve as an indicator of its evolutionary status and can be used for more accurate identification of the contributions of supernova remnants and HII zones in I(Hα)-σ diagrams. It is shown that the ranges of the velocity dispersion of the gas and the intensity of Hα line emission for supernova shells lie within intervals that are traditionally associated with ionization zones, and this must be taken into account for correct interpretation of observations of star-formation regions in other galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kunth and W. L. W. Sargent, Astrophys. J. 300, 496 (1986).

    Article  ADS  Google Scholar 

  2. J.-R. Roy and D. Kunth, Astron. Astrophys. 294, 432 (1995).

    ADS  Google Scholar 

  3. T. J. Satterfield, A. M. Katz, A. R. Sibley, et al., Astron. J. 144, 27 (2012).

    Article  ADS  Google Scholar 

  4. B. Edvardson, et al., Astron. Astrophys. 275, 101 (1993).

    ADS  Google Scholar 

  5. R. E. Luck, V. V. Kovtyukh, and S. M. Andrievsky, Astrophys. J. 132, 902 (2006).

    ADS  Google Scholar 

  6. E. A. Karitskaya, N. G. Bochkarev, V. V. Shimansky, and G. A. Galazutdinov, ASP Conf. Ser. 445, 335 (2011).

    ADS  Google Scholar 

  7. N. G. Bochkarev, E. A. Karitskaya, V. V. Shimansky, and G. A. Galazutdinov, Astron. Nachricht 334, 835 (2013).

    Article  ADS  Google Scholar 

  8. S. E. Woosley and T. A. Weaver, Astrophys. J. Suppl. Ser. 101, 181 (1995).

    Article  ADS  Google Scholar 

  9. L. B. van den Hoek and M. A. T. Groenewegen, Astr. & Astrophys. Suppl. 123, 305 (1997).

    Article  ADS  Google Scholar 

  10. K. Nomoto, C. Kobayashi, and N. Tominaga, Ann. Rev. Astr. & Astrophys. 51, 457 (2013).

    Article  ADS  Google Scholar 

  11. S. Bisnovatyi-Kogan, Astron. zh. 49, 453 (1972).

    ADS  Google Scholar 

  12. R. McCray and T. P. Snow Jr., Ann. Rev. Astr. & Astrophys. 17, 213 (1979).

    Article  ADS  Google Scholar 

  13. B. G. Elmegreen and J. Scalo, Ann. Rev. Astron. Astrophys. 42, 211 (2004).

    Article  ADS  Google Scholar 

  14. C. Munoz-Tunon, G. Tenorio-Tagle, H. O. Castaneda, and R. Terlevich, Astron. J. 112, 1636 (1996).

    Article  ADS  Google Scholar 

  15. H. Yang, Y-H. Chu, E. D. Skillman, and R. Terlevich, Astron. J. 112, 146 (1996).

  16. I. Martinez-Delgado, G. Tenorio-Tagle, C. Munoz-Tunon, et al., Astron. J. 133, 2892 (2007).

    Article  ADS  Google Scholar 

  17. A. V. Moiseev, S. A. Pustilnik, and A. Y. Kniazev, Mon. Not. Roy. Astron. Soc. 405, 2453 (2010).

    ADS  Google Scholar 

  18. A. V. Moiseev and T. A. Lozinskaya, Mon. Not. Roy. Astron. Soc. 423, 1831 (2012).

    Article  ADS  Google Scholar 

  19. E. O. Vasiliev, A. V. Moiseev, and Yu. A. Shchekinov, Balt. Astron. 24, 213 (2015).

    ADS  Google Scholar 

  20. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin (1997).

    Book  MATH  Google Scholar 

  21. Ch. Klingenberg, W. Schmidt, and K. Waagan, J. Comp. Phys. 227, 12 (2007).

    Article  ADS  Google Scholar 

  22. E. O. Vasiliev, Mon. Not. Roy. Astron. Soc. 414, 3145 (2011).

    Article  ADS  Google Scholar 

  23. E. O. Vasiliev, Mon. Not. Roy. Astron. Soc. 431, 638 (2013).

    Article  ADS  Google Scholar 

  24. M. Asplund, N. Grevesse, and A. J. Sauval, in: T. G. Barnes III and F. N. Bash, ed., ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 25 (2005). ASP, San Francisco.

  25. J. J. Drake and P. Testa, Nature, 436, 525 (2005).

    Article  ADS  Google Scholar 

  26. Yu. I. Izotov and T. X. Thuan, Astrophys. J. 500, 188 (1998).

    Article  ADS  Google Scholar 

  27. G. J. Ferland, K. T. Korista, D. A. Verner, et al., Pac. Astron. Soc. Publ. 110, 761 (1998).

    Article  ADS  Google Scholar 

  28. O. Gnat and A. Sternberg, Astrophys. J. Suppl. Ser. 168, 213 (2007).

    Article  ADS  Google Scholar 

  29. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  30. R. S. Sutherland and M. A. Dopita, Astrophys. J. Suppl. Ser. 88, 253 (1993).

    Article  ADS  Google Scholar 

  31. A. Dalgarno and R. A. McCray, Ann. Rev. Astrophys. Astron. 10, 375 (1972).

    Article  ADS  Google Scholar 

  32. D. Hollenbach and C. F. McKee, Astrophys. J. 342, 306 (1989).

    Article  ADS  Google Scholar 

  33. K. Thornton, M. Gaudlitz, H.-Th. Janka, and M. Steinmetz, Astrophys. J. 500, 95 (1998).

    Article  ADS  Google Scholar 

  34. D. F. Cioffi, C. F. McKee, and E. Bertschinger, Astrophys. J. 334, 252 (1988).

    Article  ADS  Google Scholar 

  35. Ch.-Y. Wang and R. A. Chevalier, Astrophys. J. 549, 1119 (2001).

    Article  ADS  Google Scholar 

  36. V. V. Korolev, E. O. Vasiliev, I. G. Kovalenko, and Yu. A. Shchekinov, Astron. rep. 59, 690 (2015).

    Article  ADS  Google Scholar 

  37. D. A. Badjin, S. I. Glazyrin, K. V. Manukovskiy, and S. I. Blinnikov, Mon. Not. Roy. Astron. Soc. 459, 2188 (2016).

    Article  ADS  Google Scholar 

  38. E. O. Vasiliev, Mon. Not. Roy. Astron. Soc. 419, 3641 (2012).

    Article  ADS  Google Scholar 

  39. M. de Avillez and M. M. Mac-Low, Astrophys. J. 581, 1047 (2002).

    Article  ADS  Google Scholar 

  40. S. Yu. Dedikov and Yu. A. Shchekinov, Astron. rep. 48, 9 (2004).

    Article  ADS  Google Scholar 

  41. E. O. Vasiliev, S. Yu. Dedikov, and Yu. A. Shchekinov, Astrophys. bull. 64, 317 (2009).

    Article  ADS  Google Scholar 

  42. E. O. Vasiliev and Yu. A. Shchekinov, Astron. rep. 60, 924 (2016).

    Article  ADS  Google Scholar 

  43. D. P. Cox, Astrophys. J. 78, 159 (1972).

    Article  ADS  Google Scholar 

  44. R. A. Chevalier, Astrophys. J. 188, 501 (1974).

    Article  ADS  Google Scholar 

  45. S. A. Kaplan and S. B. Pikel’ner, Physics of the Interstellar Medium [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  46. V. Bordalo, H. Plana, and E. Telles, Astrophys. J. 696, 1668 (2009).

    Article  ADS  Google Scholar 

  47. E. O. Vasiliev, B. B. Nath, and Yu. A. Shchekinov, Mon. Not. Roy. Astron. Soc. 446, 1703 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Additional information

Translated from Astrofizika, Vol. 60, No. 1, pp. 5-25 (February 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, E.O., Shchekinov, Y.A. Supernova Remnants in the Hα and Hβ Lines. Astrophysics 60, 1–18 (2017). https://doi.org/10.1007/s10511-017-9458-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-017-9458-9

Keywords

Navigation