Skip to main content
Log in

Spin-orbit coupling dynamics in a planar synchronous binary asteroid

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Purpose: The 1:1 spin-orbit resonance phenomenon is widely observed in binary asteroid systems. We aim to investigate the intrinsic dynamic mechanism behind the phenomenon under the coupled influence of the secondary’s rotation and orbital motion. Methods: The planar sphere–ellipsoid model is used to approximate the synchronous binary asteroid. The Lindstedt–Poincaré method is applied on the spin-orbit problem to find its explicit quasi-periodic solution. Results: Numerical simulations demonstrate that analytical solutions truncated at high orders are accurate enough to describe the orbital and rotational motions of the synchronous binary asteroid. With the help of the solution, we are able to identify in a more accurate way the stable region for the synchronous state by using the Lyapunov characteristic exponent. Moreover, the resonances that determine the boundary of the stability region are identified. Conclusion: The stable synchronous state requires a small eccentricity \(e\) of the mutual orbit but permits a large libration angle \(\theta \) of the secondary. The anti-correlation of \(\theta \) and \(e\) is confirmed. The stable region for a very elongated secondary is small, which helps explain the lack of such secondaries in observations (see Table 1 in Pravec et al. in Icarus 267:267–295, 2016). Findings of this study provide insights into the inherent dynamics that determine the rotational states of a synchronous binary asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 12233003) and the Space Debris and near-Earth Asteroid Defense Research Project (KJSP2020020205) of China. X.Y.H. thanks the support from Laboratory of Pinghu, Pinghu, China.

Author information

Authors and Affiliations

Authors

Contributions

Li Bo-Sheng (First Author): Conceptualization, Software, Analysis, Writing - Original Draft; Tan Pan: Methodology; Hou Xi-Yun (Corresponding Author): Conceptualization, Methodology, Funding Acquisition, Supervision, Writing - Review. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xi-Yun Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:  The coefficients in Equation (10)

Appendix:  The coefficients in Equation (10)

$$\begin{aligned} & {c_{1}} = - \frac{{3\left ( {{A_{1}} + {A_{2}}} \right )}}{{2r_{0}^{4}}} - \frac{1}{{r_{0}^{2}}} + \frac{{{K^{2}}{r_{0}}}}{{{\Upsilon ^{2}}}}, \\ &{c_{2}} = \frac{{6\left ( {{A_{1}} + {A_{2}}} \right )}}{{r_{0}^{5}}} + \frac{2}{{r_{0}^{3}}} + \frac{{{K^{2}}\left ( {{I_{\mathrm{{S}}}} - 3\mu r_{0}^{2}} \right )}}{{{\Upsilon ^{3}}}}, \\ & {c_{3}} = \frac{{2{r_{0}}{I_{\mathrm{{S}}}}K}}{{{\Upsilon ^{2}}}},\quad {c_{4}} = \frac{{{r_{0}}I_{\mathrm{{S}}}^{2}}}{{{\Upsilon ^{2}}}},\quad {c_{7}} = - \frac{{2{A_{2}}\Upsilon }}{{{I_{\mathrm{{S}}}}r_{0}^{5}}}, \\ &{c_{8}} = - \frac{{2K}}{{{r_{0}}\Upsilon }},\quad {c_{9}} = - \frac{{2{I_{\mathrm{{S}}}}}}{{{r_{0}}\Upsilon }}, \\ & {c_{5}} = 2\frac{{{I_{\mathrm{{S}}}}K}}{{{\mu ^{2}}}}\left [ {{r_{0}}F \left ( i \right ) + F\left ( {i - 1} \right )} \right ], \\ & {c_{10}} = \frac{{2K}}{{{I_{\mathrm{{S}}}}}}\left [ {{{\left ( { - {r_{0}}} \right )}^{ - i - 1}} + {r_{0}}f\left ( i \right ) + f\left ( {i - 1} \right )} \right ], \\ & {c_{6}} = \frac{{I_{\mathrm{{S}}}^{2}}}{{{\mu ^{2}}}}\left [ {{r_{0}}F \left ( i \right ) + F\left ( {i - 1} \right )} \right ], \\ & {c_{11}} = 2\left [ {{{\left ( { - {r_{0}}} \right )}^{ - i - 1}} + {r_{0}}f \left ( i \right ) + f\left ( {i - 1} \right )} \right ] \end{aligned}$$
(A.1)
$$ \begin{aligned} {\varphi _{ij}} & = {\delta _{j,0}} \left\{ \frac{{{K^{2}}}}{{{\mu ^{2}}}}\left [ {{r_{0}}F\left ( i \right ) + F \left ( {i - 1} \right )} \right ] \right.\\ &\left.\quad {}+ {{\left ( { - 1} \right )}^{i + 1}} \frac{{\left ( {i + 1} \right )}}{{r_{0}^{i + 2}}}\left [ {1 + \frac{{\left ( {i + 2} \right )\left ( {i + 3} \right )\left ( {{A_{1}} + {A_{2}}} \right )}}{{4r_{0}^{2}}}} \right ] \right\} \\ &\quad {} + {\Delta _{i,1}}{\Delta _{i,2}}{\Delta _{j,0}}{\Delta _{j,\lfloor \left ( {i + 1} \right )/2 \rfloor}}{\left ( { - 1} \right )^{i - j + 1}} \\ &\quad {}\times\frac{{{2^{2j - 2}}\left ( {i - 2j + 1} \right )\left ( {i - 2j + 2} \right )\left ( {i - 2j + 3} \right ){A_{2}}}}{{\left ( {2j} \right )!r_{0}^{i - 2j + 4}}} \\ &\quad {} + {\delta _{i \bmod 2,0}}{\delta _{j,\lfloor \left ( {i + 1} \right )/2 \rfloor}}{\left ( { - 1} \right )^{j + 1}} \frac{{3{A_{2}}}}{{2r_{0}^{4}}} \frac{{{2^{2j}}}}{{\left ( {2j} \right )!}} \end{aligned} $$
(A.2)
$$ \begin{aligned} {\psi _{ij}} &= {\left ( { - 1} \right )^{i - j + 1}} \frac{{{2^{2j - 2}}\left ( {i - 2j + 2} \right )\left ( {i - 2j + 3} \right )}}{{\left ( {2j - 1} \right )!r_{0}^{i - 2j + 4}}} \\ &\quad {}\times\left [ { \frac{{\left ( {i - 2j + 4} \right )\left ( {i - 2j + 5} \right )}}{{12r_{0}^{2}}} + \frac{\mu }{{{I_{\mathrm{{S}}}}}}} \right ]{A_{2}} \end{aligned} $$
(A.3)

Note that we introduce the following functions in the above expressions,

$$ \begin{aligned} f\left ( i \right ) &= \frac{1}{{2\sqrt { - {I_{\mathrm{{S}}}}/\mu } }} \left [ {{\left ( { \frac{{\sqrt { - {I_{\mathrm{{S}}}}/\mu } - {r_{0}}}}{{{I_{\mathrm{{S}}}}/\mu + r_{0}^{2}}}} \right )}^{i + 1}}\right.\\ &\quad {}\left. + {{\left ( { - 1} \right )}^{i}}{{\left ( { \frac{{\sqrt { - {I_{\mathrm{{S}}}}/\mu } + {r_{0}}}}{{{I_{\mathrm{{S}}}}/\mu + r_{0}^{2}}}} \right )}^{i + 1}} \right ], \\ F\left ( i \right ) &=\! \left \{ \textstyle\begin{array}{l} \left [ {{r_{0}}\sqrt { - {I_{\mathrm{{S}}}}/\mu } - {I_{\mathrm{{S}}}}/\mu \left ( {2 + i} \right )} \right ]{\left ( {\sqrt { - {I_{\mathrm{{S}}}}/ \mu } - {r_{0}}} \right )^{i + 2}} \\ - {\left ( { - 1} \right )^{i}}\left [ {r{{\sqrt { - {I_{\mathrm{{S}}}}/ \mu } }_{0}} + {I_{\mathrm{{S}}}}/\mu \left ( {2 + i} \right )} \right ] \\\quad {}\times{\left ( {\sqrt { - {I_{\mathrm{{S}}}}/\mu } + {r_{0}}} \right )^{i + 2}} \end{array}\displaystyle \hspace{-3pt} \right \} \\ &\quad {\left [ {4{{\left ( {{I_{\mathrm{{S}}}}/\mu } \right )}^{2}}{{\left ( {{I_{ \mathrm{{S}}}}/\mu + r_{0}^{2}} \right )}^{i + 2}}} \right ]^{ - 1}}, \\ {\delta _{i,j}}& = \left \{ \textstyle\begin{array}{cc} {1,} & {i = j} \\ {0,} & {i \ne j} \end{array}\displaystyle \right ., \quad {\Delta _{i,j}} = \left \{ \textstyle\begin{array}{cc} {0,} & {i = j} \\ {1,} & {i \ne j} \end{array}\displaystyle \right ., \quad \Upsilon = \mu r_{0}^{2} + {I_{\mathrm{{S}}}}. \end{aligned} $$
(A.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BS., Tan, P. & Hou, XY. Spin-orbit coupling dynamics in a planar synchronous binary asteroid. Astrophys Space Sci 369, 28 (2024). https://doi.org/10.1007/s10509-024-04291-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04291-w

Keywords

Navigation