Skip to main content
Log in

Propagation of different kinds of non-linear ion-acoustic waves in Earth’s magnetosphere

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The non-linear propagation of different kinds of ion-acoustic waves (IAWs) in multi-component plasma involving proton beam, positive ions and isothermal electrons has been studied. Using the derivative expansion method of basic equations, namely the hydrodynamic and Poisson equations, they are reduced to a single evolution equation of the non-linear Schrödinger (NLS)-type equation. By applying this model to plasma formed in Earth’s magnetosphere, different waves can be predicted that express the properties of the plasma. Using the separating variables method and the \(G^{{\prime}}/G\)-expansion method, we derived the exact analytical solutions to the evolution equation by using different solution regions in which non-linear waves are defined. A comparison has been made between the solutions describing the differential equation in each region in which the solution can appear using the data on the Earth’s magnetosphere in the study by Alotaibi et al. (2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Afify, M.S., Tolba, R.E., Moslem, W.M.: The mechanism that drives electrostatic solitary waves to propagate in the Earth’s magnetosphere and solar wind. Contrib. Plasma Phys. 62(9), e202200041 (2022)

    Article  Google Scholar 

  • Al-Yousef, H.A., Alotaibi, B., Tolba, R., Moslem, W.: Arbitrary amplitude dust-acoustic waves in Jupiter atmosphere. Results Phys. 21, 103792 (2021)

    Article  Google Scholar 

  • Ali, S., Masood, W., Rizvi, H., Jahangir, R., Mirza, A.M.: Contribution of the generalized (r, q) distributed electrons in the formation of nonlinear ion acoustic waves in upper ionospheric plasmas. AIP Adv. 11(12), 125020 (2021)

    Article  Google Scholar 

  • Alotaibi, B., Al-Yousef, H.A., Tolba, R., Moslem, W.: Nonlinear dust-acoustic modes in homogeneous dusty plasmas: bifurcation analysis. Phys. Scr. 96(12), 125611 (2021)

    Article  Google Scholar 

  • Bakhmetieva, N.V., Kulikov, Y.Y., Zhemyakov, I.N.: Mesosphere ozone and the lower ionosphere under plasma disturbance by powerful high-frequency radio emission. Atmosphere 11(11), 1154 (2020)

    Article  Google Scholar 

  • Das, A.: Integrable Models. World Scientific Lecture Notes in Physics, vol. 30. World scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  • Evans, M., Gras, S., Fritschel, P., Miller, J., Barsotti, L., Martynov, D., Brooks, A., Coyne, D., Abbott, R., Adhikari, R.X., et al.: Observation of parametric instability in advanced ligo. Phys. Rev. Lett. 114(16), 161102 (2015)

    Article  Google Scholar 

  • Gharaee, H., Afghah, S., Abbasi, H.: Modulational instability of ion-acoustic waves in plasmas with superthermal electrons. Phys. Plasmas 18(3), 032116 (2011)

    Article  Google Scholar 

  • Golikov, I., Gololobov, A.Y., Popov, V.: Modeling the electron temperature distribution in f2 region of high-latitude ionosphere for winter solstice conditions. Sol.-Terr. Phys. 2(4), 70–80 (2016)

    Google Scholar 

  • Helling, C., Worters, M., Samra, D., Molaverdikhani, K., Iro, N.: Understanding the atmospheric properties and chemical composition of the ultra-hot Jupiter hat-p-7b-iii. Changing ionisation and the emergence of an ionosphere. Astron. Astrophys. 648, A80 (2021)

    Article  Google Scholar 

  • Honzawa, T., Kawai, Y.: Ion heating caused by ion acoustic waves in an ion-streaming plasma. Plasma Phys. 14(1), 27 (1972)

    Article  Google Scholar 

  • Khan, G., Kumail, Z., Khan, Y., Ullah, I., Adnan, M.: On the existence and formation of small amplitude electrostatic double-layer structure in nonthermal dusty plasma. Contrib. Plasma Phys. 60(8), e201900177 (2020)

    Google Scholar 

  • Levine, E.V., Bernhardt, P.A., Sulzer, M.P., Sultan, P.J., Henderson, B.S., Nossa, E., Briczinski, S.C., Perillat, P.: Plasma cavity formation during ionospheric heating at Arecibo. J. Geophys. Res. Space Phys. 125(7), e2019JA027715 (2020)

    Article  Google Scholar 

  • Ma, B.-K., Guo, L.-X., Su, H.-T., Zhang, B.-C., Hu, H.-Q.: Incoherent scatter spectrum of ionospheric plasma with an anisotropic temperature ion distribution. Astrophys. Space Sci. 340(2), 237–243 (2012)

    Article  Google Scholar 

  • Malik, H.K., Srivastava, R., Kumar, S., Singh, D.: Small amplitude dust acoustic solitary wave in magnetized two ion temperature plasma. J. Taibah Univ. Sci. 14(1), 417–422 (2020)

    Article  Google Scholar 

  • Moslem, W., Salem, S., Sabry, R., Lazar, M., Tolba, R., El-Labany, S.: Ion escape from the upper ionosphere of Titan triggered by the solar wind. Astrophys. Space Sci. 364(9), 1–7 (2019a)

    Article  MathSciNet  Google Scholar 

  • Moslem, W., Tolba, R., Ali, S.: Potentials of a moving test charge during the solar wind interaction with dusty magnetosphere of Jupiter. Phys. Scr. 94(7), 075601 (2019b)

    Article  Google Scholar 

  • Moslem, W., El-Said, A.S., Tolba, R., Bahlouli, H.: Modifications of single walled carbon nanotubes by ion-induced plasma. Results Phys. 37, 105438 (2022)

    Article  Google Scholar 

  • Mushinzimana, X., Nsengiyumva, F.: Large amplitude ion-acoustic solitary waves in a warm negative ion plasma with superthermal electrons: the fast mode revisited. AIP Adv. 10(6), 065305 (2020)

    Article  Google Scholar 

  • Mushinzimana, X., Nsengiyumva, F., Yadav, L.: Large amplitude slow ion-acoustic solitons, supersolitons, and double layers in a warm negative ion plasma with superthermal electrons. AIP Adv. 11(2), 025325 (2021)

    Article  Google Scholar 

  • Patel, A., Sharma, M., Ganesh, R., Ramasubramanian, N., Chattopadhyay, P.: Experimental observation of drift wave turbulence in an inhomogeneous six-pole cusp magnetic field of mpd. Phys. Plasmas 25(11), 112114 (2018)

    Article  Google Scholar 

  • Pavlov, A., Abe, T., Oyama, K.-I.: Comparison of the measured and modelled electron densities and temperatures in the ionosphere and plasmasphere during 20-30 January, 1993. In: Annales Geophysicae, vol. 18, pp. 1257–1262 (2000). Copernicus GmbH

    Google Scholar 

  • Sabry, R., Moslem, W., Shukla, P.: Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas. Phys. Rev. E 86(3), 036408 (2012)

    Article  Google Scholar 

  • Salem, S., Moslem, W., Radi, A.: Expansion of Titan atmosphere. Phys. Plasmas 24(5), 052901 (2017)

    Article  Google Scholar 

  • Scott, A.: Nonlinear Science, vol. 4. Oxford University Press, Oxford (1999)

    Google Scholar 

  • Shrira, V., Voronovich, V., Kozhelupova, N.: Explosive instability of vorticity waves. J. Phys. Oceanogr. 27(4), 542–554 (1997)

    Article  Google Scholar 

  • Thidé, B., Derblom, H., Hedberg, Å., Kopka, H., Stubbe, P.: Observations of stimulated electromagnetic emissions in ionospheric heating experiments. Radio Sci. 18(6), 851–859 (1983)

    Article  Google Scholar 

  • Thompson, A.R., Moran, J.M., Swenson, G.W.: Interferometry and Synthesis in Radio Astronomy. Springer, New York (2017)

    Book  Google Scholar 

  • Tolba, R.E.: Propagation of dust-acoustic nonlinear waves in a superthermal collisional magnetized dusty plasma. Eur. Phys. J. Plus 136(1), 1–15 (2021)

    Article  Google Scholar 

  • Tolba, R., Moslem, W., Elsadany, A., El-Bedwehy, N., El-Labany, S.: Development of cnoidal waves in positively charged dusty plasmas. IEEE Trans. Plasma Sci. 45(9), 2552–2560 (2017)

    Article  Google Scholar 

  • Tolba, R., Yahia, M., Moslem, W.: Nonlinear dynamics in the Jupiter magnetosphere: implications of dust-acoustic cnoidal mode. Phys. Scr. 96(12), 125637 (2021)

    Article  Google Scholar 

  • Yahia, M., Tolba, R., Moslem, W.: Super rogue wave catalysis in Titan?s ionosphere. Adv. Space Res. 67(4), 1412–1424 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah under grant No. (G:187-665-1443). Therefore, the authors gratefully acknowledge the DSR’s technical financial support.

Author information

Authors and Affiliations

Authors

Contributions

N.S. Alharthi: Conceptualisation, Software, Writing – review, Supervision. R.E. Tolba: Methodology, Formal analysis, Review & Editing.

Corresponding authors

Correspondence to N. S. Alharthi or R. E. Tolba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} & s_{1}=\frac{-k^{2}}{3k^{2}-\omega ^{2}},\text{ }s_{2}= \frac{s_{1}\omega }{k},\text{ }s_{3}= \frac{k^{2}\mu _{b}}{\omega ^{2}-2ku_{b0}\omega +k^{2}\left ( u_{b0}^{2}-3\mu _{b}\sigma _{b}\right ) }, \\ & s_{4}= \frac{k\mu _{b}\left ( \omega -ku_{b0}\right ) }{\omega ^{2}-2ku_{b0}\omega +k^{2}\left ( u_{b0}^{2}-3\mu _{b}\sigma _{b}\right ) },\text{ }s_{5}= \frac{i\left ( k+3ks_{1}-ks_{2}V_{g}+\omega s_{2}-s_{1}V_{g}\omega \right ) }{3k^{2}-\omega ^{2}}, \\ & s_{6}= \frac{i\left ( 3ks_{2}-3ks_{1}V_{g}+\omega +3\omega s_{1}-s_{2}V_{g}\omega \right ) }{3k^{2}-\omega ^{2}}, \\ & s_{7}= \frac{-i\left ( k\left ( \mu _{b}-s_{4}V_{g}+s_{3}\left ( u_{b0}\left ( V_{g}-u_{b0}\right ) +3\mu _{b}\sigma _{b}\right ) \right ) +\left ( s_{4}+s_{3}\left ( u_{b0}-V_{g}\right ) \right ) \omega \right ) }{\omega ^{2}-2ku_{b0}\omega +k^{2}\left ( u_{b0}^{2}-3\mu _{b}\sigma _{b}\right ) }, \\ & s_{8}= \frac{i\left ( ku_{b0}(s_{4}\left ( u_{b0}-V_{g}\right ) +\mu _{b})-3k\left ( s_{4}-s_{3}V_{g}\right ) \mu _{b}\sigma _{b}-(s_{4}\left ( u_{b0}-V_{g}\right ) +\mu _{b}+3s_{3}\mu _{b}\sigma _{b}\right ) \omega )}{\omega ^{2}-2ku_{b0}\omega +k^{2}\left ( u_{b0}^{2}-3\mu _{b}\sigma _{b}\right ) }, \\ & s_{9}=\frac{s_{91}}{s_{90}},\text{ }s_{90}=s_{901}+s_{902},\text{ }s_{91}=s_{911}+s_{912}+s_{913}, \\ & s_{901}=2k^{4}\left ( u_{b0}^{2}\left ( 1+12k^{2}3\sigma _{e}\delta _{e} \right ) -3\mu _{b}\left ( \delta _{b}\sigma _{b}+12k^{2}\sigma _{b}+3 \sigma _{b}\sigma _{e}\delta _{e}\right ) \right ) -4k^{3}u_{b0} \omega (1+12k^{2}-3\sigma _{e}\delta _{e}), \\ & s_{902}=2k^{2}(-1-\delta _{b}\mu _{b}+(u_{b0}^{2}-3-3\mu _{b}\sigma _{b})(4k^{2}+ \sigma _{e}\delta _{e}))\omega ^{2}+2\omega ^{3}(4k^{2}+\sigma _{e} \delta _{e})(2ku_{b0}-\omega ), \\ & s_{911}=ik^{3}(a_{1}\delta _{b}-ik(2s_{3}s_{4}u_{b0}\delta _{b}+ \delta _{e}(u_{b0}^{2}-3\mu _{b}\sigma _{b})\sigma _{e}^{2})+a_{2}(- \delta _{b}\mu _{b}+(u_{b0}^{2}-3\mu _{b}\sigma _{b})(4k^{2}+\sigma _{e} \delta _{e}))), \\ & s_{912} =-2k^{2}(ia_{2}u_{b0}(4k^{2}+\sigma _{e}\delta _{e})+k(s_{3}s_{4} \delta _{b}-s_{1}s_{2}\delta _{b}\mu _{b}+4k^{2}s_{1}s_{2}(u_{b0}^{2}-3 \mu _{b}\sigma _{b})+ \\ &\hspace{1cm} s_{1}s_{2}\delta _{e}(u_{b0}^{2}-3\mu _{b}\sigma _{b})\sigma _{e}+u_{b0} \delta _{e}\sigma _{e}^{2}))\omega +\omega ^{3}(-2s_{1}ks_{2}(4k^{2}+ \sigma _{e}\delta _{e})), \\ & s_{913}=\omega ^{3}(k(ia_{2}(4k^{2}+\sigma _{e}\delta _{e})+k(16k^{2}s_{1}s_{2}u_{b0}+ \delta _{e}\sigma _{e}(4s_{1}s_{2}u_{b0}+\sigma _{e}))\omega ^{2}, \\ & s_{10}=\frac{s_{101}}{s_{90}},s_{101}=s_{102}+s_{103}+s_{104}+s_{105},s_{104}=\omega ^{3}(k\sigma _{e}^{2} \delta _{e}+ia_{2}\delta _{e}\sigma _{e}+4ia_{2}k^{2}), \\ & s_{102}=-2k^{4}s_{1}s_{2}(u_{b0}^{2}(1+12k^{2}+3\delta _{e}\sigma _{e})-3 \mu _{b}(\delta _{b}+\sigma _{b}+12k^{2}\sigma _{b}+3\delta _{e} \sigma _{e}\sigma _{e})), \\ &s_{103} =k^{2}(48k^{3}s_{1}s_{2}u_{b0}+4ia_{2}k^{2}(u_{b0}^{2}-3 \mu _{b}\sigma _{b}))\omega +k4s_{1}s_{2}u_{b0}(1+3\delta _{e}\sigma _{e}) \omega \\ &\hspace{1cm} k^{2}(i(a_{1}\delta _{b}-a_{2}\delta _{b}\mu _{b}+a_{2}\delta _{e}(u_{b0}^{2}-3 \mu _{b}\sigma _{b})\sigma _{e})\omega +k(\delta _{e}(u_{b0}^{2}-3 \mu _{b}\sigma _{b})\sigma _{e}^{2}+2s_{3}s_{4}\delta _{b}u_{b0}) \omega \\ & s_{105}=-2k\omega ^{2}(12k^{3}s_{1}s_{2}+4ia_{2}k^{2}u_{b0}+ia_{2}u_{b0} \delta _{e}\sigma _{e}+k(s_{3}s_{4}\delta _{b}+u_{b0}\delta _{e} \sigma _{e}^{2}+s_{1}(s_{2}+3s_{2}\delta _{e}\sigma _{e}))), \\ & s_{11}=\frac{s_{111}+s_{112}}{s_{90}}, \\ & s_{111}=-k(2s_{3}s_{4}(ku_{b0}-\omega )(12k^{4}-\delta _{e}\sigma _{e} \omega ^{2}+k^{2}(1+3\delta _{e}\sigma _{e}-4\omega ^{2})), \\ & s_{112}=ik(a_{1}k^{2}(1+12k^{2}+3\delta _{e}\sigma _{e})-a_{1}(4k^{2}+ \delta _{e}\sigma _{e})\omega ^{2}-ik\mu _{b}(-ia_{2}k+3k^{2}\delta _{e} \sigma _{e}^{2}+2ks_{1}s_{2}\omega -\delta _{e}\sigma _{e}^{2}\omega ^{2}))), \\ & s_{12}=\frac{s_{121}+s_{122}+s_{123}+s_{124}}{s_{90}},\text{ }s_{124}= \omega ^{3}(k\delta _{e}\mu _{b}\sigma _{e}^{2}+ia_{1}(4k^{2}+\delta _{e} \sigma _{e})), \\ & s_{121}=-i\omega k^{2}(a_{1}(1+12k^{2}+3\delta _{e}\sigma _{e})-\mu _{b}(a_{2}-2iks_{1}s_{2}u_{b0}+3ik \delta _{e}\sigma _{e}^{2})), \\ & s_{122}=-k\omega ^{2}(ia_{1}u_{b0}(4k^{2}+\delta _{e}\sigma _{e})+k \mu _{b}(2s_{1}s_{2}+u_{b0}\delta _{e}\sigma _{e}^{2}+2s_{3}s_{4}( \delta _{b}+3\sigma _{b}(4k^{2}+\delta _{e}\sigma _{e})))), \\ & s_{13}=\frac{s_{131}+s_{132}+s_{133}+s_{134}}{s_{90}}+ \frac{\delta _{e}\sigma _{e}^{2}\omega ^{4}}{s_{90}},s_{131}=-2k \omega ^{3}(s_{1}s_{2}+s_{3}s_{4}\delta _{b}+u_{b0}\delta _{e}\sigma _{e}^{2}), \\ & s_{132}=k\omega ^{2}(ia_{2}+ia_{1}\delta _{b}+2ku_{b0}(2s_{1}s_{2}+s_{3}s_{4} \delta _{b})+k\delta _{e}\sigma _{e}^{2}(u_{b0}^{2}-3-3\delta _{b} \mu _{b})), \\ & s_{133}=2k^{2}\omega (-ia_{2}u_{b0}+k(3s_{3}s_{4}\delta _{b}-s_{1}s_{2}u_{b0}^{2}+3s_{1}s_{2} \mu _{b}\sigma _{b}+3u_{b0}\delta _{e}\sigma _{e}^{2})), \\ & s_{134}=-k^{3}(3ia_{1}\delta _{b}+6ks_{3}s_{4}u_{b0}\delta _{b}-ia_{2}(u_{b0}-3 \mu _{b}\sigma _{b})+3k\delta _{e}(u_{b0}^{2}-3\mu _{b}\sigma _{b}) \sigma _{e}^{2}), \\ & s_{14}=\frac{s_{141}+s_{142}+s_{143}+s_{144}}{s_{90}}- \frac{4k^{2}\sigma _{e}^{2}\omega ^{4}}{s_{90}}, \\ & s_{141}=2k\sigma _{e}(-s_{1}s_{2}-s_{3}s_{4}\delta _{b}+4k^{2}u_{b0} \sigma _{e})\omega ^{3}, \\ & s_{142}=k\sigma _{e}\omega ^{2}(-i(a_{2}+a_{1}\delta _{b}-2iku_{b0}(2s_{1}s_{2}+s_{3}s_{4} \delta _{b}))+k(4k^{2}(-3+u_{b0}^{2}-3\mu _{b}\sigma _{b})-1-\delta _{b} \mu _{b})), \\ & s_{143}=-2k^{2}\sigma _{e}\omega (ia_{2}u_{b0}+k(-3s_{3}s_{4}\delta _{b}+s_{1}s_{2}(u_{b0}^{2}-3 \mu _{b}\sigma _{b})+u_{b0}\sigma _{e}+12k^{2}u_{b0}\sigma _{e})), \\ & s_{144} =k^{3}\sigma _{e}(-3ia_{1}\delta _{b}-6ks_{3}s_{4}u_{b0} \delta _{b}+ia_{2}(u_{b0}^{2}-3\mu _{b}\sigma _{b})+k(1+12k^{2})u_{b0} \\ &\hspace{1cm} -3\mu _{b}(\delta _{b}+\sigma _{b}+12k^{2}\sigma _{b}))\sigma _{e}), \\ & s_{15}=\frac{s_{151}+s_{152}}{s_{150}},\text{ }s_{16}= \frac{s_{161}+s_{162}+s_{163}}{s_{150}},\text{ }s_{17}= \frac{s_{171}+s_{172}}{s_{150}}, \\ & s_{150}=(u_{b0}-V_{g})^{2}-\delta _{e}(V_{g}^{2}-3)((u_{b0}-V_{g})^{2}-3 \mu _{b}\sigma _{b})\sigma _{e}+\mu _{b}((V_{g}^{2}-3)\delta _{b}-3 \sigma _{b}), \\ & s_{151}=\delta _{b}(-s_{4}(s_{4}+s_{1}(V_{g}-u_{b0}))+s_{3}^{2}(u_{b0}-V_{g}-3 \mu _{b}\sigma _{b}))+\delta _{e}((u_{b0}-V_{g})^{2}-3\mu _{b}\sigma _{b}) \sigma _{e}^{2}, \\ & s_{152}=(3s_{1}^{2}+s_{2}^{2}+2s_{1}s_{2}V_{g})(-\delta _{b}\mu _{b}+ \delta _{e}((u_{b0}-V_{g})^{2}-3\mu _{b}\sigma _{b})\sigma _{e}), \\ & s_{161}=3s_{1}^{2}V_{g}(\delta _{b}\mu _{b}-\delta _{e}((u_{b0}-V_{g})^{2}-3 \mu _{b}\sigma _{b})\sigma _{e}+V_{g}(-s_{4}^{2}\delta _{b}+s_{3}^{2} \delta _{b}(u_{b0}-V_{g}-3\mu _{b}\sigma _{b})), \\ & s_{162}=V_{g}\delta _{e}((u_{b0}-V_{g})^{2}-3\mu _{b}\sigma _{b}) \sigma _{e}^{2}+s_{2}^{2}(\delta _{b}\mu _{b}-\delta _{e}((u_{b0}-V_{g})^{2}-3 \mu _{b}\sigma _{b})\sigma _{e}), \\ & s_{163}=s_{1}(s_{4}(u_{b0}-V_{g})V_{g}\delta _{b}-2s_{2}((u_{b0}-V_{g})^{2}-3 \mu _{b}(\delta _{b}+\sigma _{b})-\delta _{e}((u_{b0}-V_{g})^{2}-3 \mu _{b}\sigma _{b})\sigma _{e})), \\ & s_{171}=-\mu _{b}(3s_{1}^{2}+s_{2}^{2}+2s_{1}s_{2}V_{g})+\mu _{b} \delta _{e}\sigma _{e}^{2}(V_{g}^{2}-3)+s_{4}^{2}(1-\delta _{e} \sigma _{e}(V_{g}^{2}-3)), \\ & s_{172}=s_{1}s_{4}(u_{b0}-V_{g})(-1+\delta _{e}\sigma _{e}(V_{g}^{2}-3))+s_{3}(u_{b0}-V_{g}-3 \mu _{b}\sigma _{b})(-1+\delta _{e}\sigma _{e}(V_{g}^{2}-3)). \\ & s_{18}=\frac{s_{181}+s_{182}+s_{183}}{s_{150}},\text{ }s_{19}= \frac{s_{191}+s_{192}+s_{193}}{s_{150}},\text{ }s_{20}= \frac{s_{201}+s_{202}+s_{203}}{s_{150}}, \\ & s_{181}=s_{4}(u_{b0}-V_{g})(-1+\delta _{e}\sigma _{e}(V_{g}^{2}-3))+ \mu _{b}((2s_{1}s_{2}V_{g}+3s_{1}^{2}+s_{2}^{2})(u_{b0}-V_{g})), \\ & s_{182}=\mu _{b}(s_{3}^{2}(3\sigma _{b}(1-u_{b0}+V_{g})-(V_{g}^{2}-3))+3s_{3}^{2}(-1+u_{b0}-V_{g}) \delta _{e}\sigma _{e}\sigma _{b}(V_{g}^{2}-3)), \\ & s_{183}=\mu _{b}((-u_{b0}+V_{g})(V_{g}^{2}-3)\delta _{e}\sigma _{e}^{2})+s_{1}s_{4} \mu _{b}(-\delta _{b}(V_{g}^{2}-3)+\sigma _{b}(3-3(V_{g}^{2}-3) \delta _{e}\sigma _{e})), \\ & s_{191}=s_{1}(u_{b0}-V_{g})(2s_{2}V_{g}(-u_{b0}+V_{g})+s_{4}(-V_{g}^{2}+3)\delta _{b})+6s_{1}s_{2}V_{g}\mu _{b}\sigma _{b}+3s_{1}^{2}(3\mu _{b} \sigma _{b}-(u_{b0}-V_{g})^{2}), \\ & s_{192}=s_{2}(-(3\mu _{b}\sigma _{b}-(u_{b0}-V_{g})^{2}+(V_{g}^{2}-3)(- \delta _{b}(s_{4}^{2}+s_{3}^{2}(3\mu _{b}\sigma _{b}-u_{b0}+V_{g})), \\ & s_{193}=\delta _{e}\sigma _{e}^{2}(V_{g}^{2}-3)((u_{b0}-V_{g})^{2}-3 \mu _{b}\sigma _{b}), \\ & s_{201}=-\sigma _{e}(s_{1}(u_{b0}-V_{g})(2s_{2}(u_{b0}-V_{g})V_{g}-s_{4} \delta _{b}(V_{g}^{2}-3))-6s_{1}s_{2}V_{g}\mu _{b}\sigma _{b}), \\ & s_{202}=-\sigma _{e}((3s_{1}^{2}+s_{2}^{2})(u_{b0}-V_{g})^{2}-3\mu _{b} \sigma _{b})+\delta _{b}(V_{g}^{2}-3)(s_{4}^{2}+s_{3}^{2}(-u_{b0}+V_{g}+3 \mu _{b}\sigma _{b}))), \\ & s_{203}=\sigma _{e}^{2}(u_{b0}^{2}-2u_{b0}V_{g}+V_{g}^{2}(1+\delta _{b} \mu _{b})-3\mu _{b}(\delta _{b}+\sigma _{b})). \\ & a_{1}= \frac{ik^{3}\mu _{b}^{2}(k^{2}(u_{b0}^{2}+3_{b}\mu _{b}\sigma _{b})-2ku_{b0}\omega +\omega ^{2})}{(k^{2}(u_{b0}^{2}-3_{b}\mu _{b}\sigma _{b})-2ku_{b0}\omega +\omega ^{2})^{2}}, \text{ }a_{2}= \frac{ik^{3}(3k^{2}+\omega ^{2})}{(-3k^{2}+\omega ^{2})^{2}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, N.S., Tolba, R.E. Propagation of different kinds of non-linear ion-acoustic waves in Earth’s magnetosphere. Astrophys Space Sci 367, 113 (2022). https://doi.org/10.1007/s10509-022-04148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04148-0

Keywords

Navigation