Skip to main content
Log in

Polynomial-based method for determining coast-terminating zero of fuel-optimal time-fixed trajectory

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

A Correction to this article was published on 21 February 2020

This article has been updated

Abstract

This paper presents a fail-safe polynomial-based method for determining the coast-terminating zero (CTZ) of fuel-optimal, time-fixed, low-thrust trajectories. The CTZ of the fuel-optimal bang-bang control is decided by the zeros of the switching function (SF). The state and costate differential equations along the coast arcs of the optimal trajectory have closed-form solutions; thus efficiently determining the CTZ is important. Existing methods suffer potential failures or are limited to time-free problems. The polynomial-based method consists of three steps. First, the SF is simplified by a coordinate transformation that eliminates the three orientation-related orbital elements. Then, the SF is rewritten as a combination of power and trigonometric functions of the argument eccentric anomaly, and the coefficients in the SF are simply evaluated using the states and costates at the periapsis. Finally, the SF is described as a polynomial of the eccentric anomaly by replacing the trigonometric functions with polynomials. The roots of the polynomial can provide an accurate estimation of the CTZ. Based on a Monte Carlo simulation, SF curves whose greatest possible numbers of zeros are \(1,2,\ldots,7\) are listed. For each curve, the CTZ is solved by both the presented polynomial-based method and the existing sampling-searching method. The performance comparison demonstrates that the polynomial-based method provides superior reliability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Change history

  • 21 February 2020

    In the original article, there is an error on page 4 regarding coordinate transformation which is corrected here. This error does not influence the results and contributions of the manuscript. The contents of page 4 except Eq. (15) and the two paragraphs immediately before it are replaced by the following:

  • 21 February 2020

    In the original article, there is an error on page 4 regarding coordinate transformation which is corrected here. This error does not influence the results and contributions of the manuscript. The contents of page 4 except Eq. (15) and the two paragraphs immediately before it are replaced by the following:

References

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant 11672146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanghua Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: \(a_{i}\) and \(b_{j}\) in Eq. (23) and Eq. (24)

For Eq. (23), the coefficients of \(\sin E\) and \(\cos E\) are given in Eq. (A.1) and Eq. (A.3) if \(E \in [-\pi ,-\pi /2 ]\), Eq. (A.1) and Eq. (A.4) and if \(E \in [-\pi /2,0 ]\), Eq. (A.2) and Eq. (A.4) if \(E \in [0, \pi /2 ]\), and Eq. (A.2) and Eq. (A.5) if \(E \in [\pi /2,\pi ]\).

$$ \left [ { \textstyle\begin{array}{c} {{a_{0}}} \\ {{a_{1}}} \\ {{a_{2}}} \\ {{a_{3}}} \\ {{a_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} 0 \\ {{S_{12}}\, {S_{13}}} \\ {{S_{12}}\, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} \\ { - 2\, {S_{11}}\, {S_{13}}\, {S_{14}}} \\ { - {S_{11}}\, {S^{2}_{14}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} 0 \\ {0.9868} \\ { - 0.0507} \\ { - 0.2322} \\ { - 0.0370} \end{array}\displaystyle } \right ] $$
(A.1)
$$ \left [ { \textstyle\begin{array}{c} {{a_{0}}} \\ {{a_{1}}} \\ {{a_{2}}} \\ {{a_{3}}} \\ {{a_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {\mathrm{{0}}} \\ {{S_{12}}\, {S_{13}}} \\ {{S_{11}}\, {S^{2}_{13}} - {S_{12}}\, {S_{14}}} \\ { - 2\, {S_{11}}\, {S_{13}}\, {S_{14}}} \\ {{S_{11}}\, {S^{2}_{14}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {\mathrm{{0}}} \\ { - \mathrm{{0}}{\mathrm{{.9868}}}} \\ {\mathrm{{0}}{\mathrm{{.0507}}}} \\ { - \mathrm{{0}}{\mathrm{{.2322}}}} \\ {\mathrm{{0}}{\mathrm{{.0370}}}} \end{array}\displaystyle } \right ] $$
(A.2)
$$\begin{aligned} &\left [ { \textstyle\begin{array}{c} {{b_{0}}} \\ {{b_{1}}} \\ {{b_{2}}} \\ {{b_{3}}} \\ {{b_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {\frac{{{\pi ^{2}} ( {{S_{12}}\, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} )}}{4} - \frac{{{S_{11}}\, {S^{2}_{14}}\, {\pi ^{4}}}}{{16}} + \frac{{\pi \, {S_{12}}\, {S_{13}}}}{2} - \frac{{{S_{11}}\, {S_{13}}\, {S_{14}}\, {\pi ^{3}}}}{4}} \\ {{S_{12}}\, {S_{13}} + \pi ( {{S_{12}} \, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} ) - \frac{{{S_{11}}\, {S^{2}_{14}}\, {\pi ^{3}}}}{2} - \frac{{3\, {S_{11}}\, {S_{13}}\, {S_{14}}\, {\pi ^{2}}}}{2}} \\ { - {S_{11}}\, {S^{2}_{13}} - 3\, {S_{11}}\, \pi \, {S_{13}}\, {S_{14}} - \frac{{3\, {S_{11}}\, {\pi ^{2}}\, {S^{2}_{14}}}}{2} + {S_{12}}\, {S_{14}}} \\ { - 2\, {S_{11}}\, \pi \, {S^{2}_{14}} - 2 \, {S_{11}}\, {S_{13}}\, {S_{14}}} \\ { - {S_{11}}\, {S^{2}_{14}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {0.3000} \\ { - 1.4642} \\ { - 1.6921} \\ { - 0.4644} \\ { - 0.0370} \end{array}\displaystyle } \right ] \end{aligned}$$
(A.3)
$$\begin{aligned} &\left [ { \textstyle\begin{array}{c} {{b_{0}}} \\ {{b_{1}}} \\ {{b_{2}}} \\ {{b_{3}}} \\ {{b_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {\frac{{{S_{11}}\, {S^{2}_{14}}\, {\pi ^{4}}}}{{16}} - \frac{{{\pi ^{2}} ( {{S_{12}}\, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} )}}{4} + \frac{{\pi \, {S_{12}}\, {S_{13}}}}{2} - \frac{{{S_{11}}\, {S_{13}}\, {S_{14}}\, {\pi ^{3}}}}{4}} \\ {{S_{12}}\, {S_{13}} - \pi ( {{S_{12}} \, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} ) + \frac{{{S_{11}}\, {S^{2}_{14}}\, {\pi ^{3}}}}{2} - \frac{{3\, {S_{11}}\, {S_{13}}\, {S_{14}}\, {\pi ^{2}}}}{2}} \\ {{S_{11}}\, {S^{2}_{13}} - 3\, {S_{11}}\, \pi \, {S_{13}}\, {S_{14}} + \frac{{3\, {S_{11}}\, {\pi ^{2}}\, {S^{2}_{14}}}}{2} - {S_{12}}\, {S_{14}}} \\ {2\, \pi \, {S_{11}}\, {S^{2}_{14}} - 2 \, {S_{11}}\, {S_{13}}\, {S_{14}}} \\ {{S_{11}}\, {S^{2}_{14}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {\mathrm{{1}}.\mathrm{{0}}000} \\ \mathrm{{0}} \\ { - \mathrm{{0}}{\mathrm{{.4965}}}} \\ \mathrm{{0}} \\ { - 0.0370} \end{array}\displaystyle } \right ] \end{aligned}$$
(A.4)
$$\begin{aligned} & \left [ { \textstyle\begin{array}{c} {{b_{0}}} \\ {{b_{1}}} \\ {{b_{2}}} \\ {{b_{3}}} \\ {{b_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {\frac{{{\pi ^{2}} ( {{S_{12}}\, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} )}}{4} - \frac{{{S_{11}}\, {S^{2}_{14}}\, {\pi ^{4}}}}{{16}} + \frac{{\pi \, {S_{12}}\, {S_{13}}}}{2} - \frac{{{S_{11}}\, {S_{13}}\, {S_{14}}\, {\pi ^{3}}}}{4}} \\ {\frac{{{S_{11}}\, {S^{2}_{14}}\, {\pi ^{3}}}}{2} - \pi ( {{S_{12}}\, {S_{14}} - {S_{11}}\, {S^{2}_{13}}} ) - {S_{12}}\, {S_{13}} + \frac{{3\, {S_{11}}\, {S_{13}}\, {S_{14}}\, {\pi ^{2}}}}{2}} \\ { - {S_{11}}\, {S^{2}_{13}} - 3\, {S_{11}}\, \pi \, {S_{13}}\, {S_{14}} - \frac{{3\, {S_{11}}\, {\pi ^{2}}\, {S^{2}_{14}}}}{2} + {S_{12}}\, {S_{14}}} \\ {2\, {S_{11}}\, \pi \, {S^{2}_{14}} + 2 \, {S_{11}}\, {S_{13}}\, {S_{14}}} \\ { - {S_{11}}\, {S^{2}_{14}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {0.3000} \\ {1.4642} \\ { - 1.6921} \\ {0.4644} \\ { - 0.0370} \end{array}\displaystyle } \right ] \end{aligned}$$
(A.5)

For Eq. (24), the coefficients of \(\sin E\) and \(\cos E\) are given in Eq. (A.6) and Eq. (A.8) if \(E \in [-\pi ,-\pi /2 ]\), Eq. (A.7) and Eq. (A.9) and if \(E \in [\pi /2,3\pi /2 ]\).

$$ \left [ { \textstyle\begin{array}{c} {{a_{0}}} \\ {{a_{1}}} \\ {{a_{2}}} \\ {{a_{3}}} \\ {{a_{4}}} \\ {{a_{5}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} 0 \\ {\frac{{2\, {S_{11}}}}{\pi }} \\ 0 \\ { - \frac{{8\, {S_{12}}}}{{{\pi ^{3}}}}} \\ 0 \\ {\frac{{32\, {S_{13}}}}{{{\pi ^{5}}}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} 0 \\ {0.9993} \\ 0 \\ { - 0.1650} \\ 0 \\ {7.2904 \times {{10}^{ - 3}}} \end{array}\displaystyle } \right ] $$
(A.6)
$$ \left [ { \textstyle\begin{array}{c} {{a_{0}}} \\ {{a_{1}}} \\ {{a_{2}}} \\ {{a_{3}}} \\ {{a_{4}}} \\ {{a_{5}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {8\, {S_{12}} - 2\, {S_{11}} - 32\, {S_{13}}} \\ {\frac{{2\, {S_{11}}}}{\pi } - \frac{{24\, {S_{12}}}}{\pi } + \frac{{160\, {S_{13}}}}{\pi }} \\ {\frac{{24\, {S_{12}}}}{{{\pi ^{2}}}} - \frac{{320\, {S_{13}}}}{{{\pi ^{2}}}}} \\ {\frac{{320\, {S_{13}}}}{{{\pi ^{3}}}} - \frac{{8\, {S_{12}}}}{{{\pi ^{3}}}}} \\ { - \frac{{160\, {S_{13}}}}{{{\pi ^{4}}}}} \\ {\frac{{32\, {S_{13}}}}{{{\pi ^{5}}}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {0.2549} \\ {0.3349} \\ {0.7055} \\ { - 0.5545} \\ {0.1145} \\ { - 0.7290 \times {{10}^{ - 3}}} \end{array}\displaystyle } \right ] $$
(A.7)
$$ \left [ { \textstyle\begin{array}{c} {{b_{0}}} \\ {{b_{1}}} \\ {{b_{2}}} \\ {{b_{3}}} \\ {{b_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {{C_{11}}} \\ 0 \\ { - \frac{{4\, {C_{12}}}}{{{\pi ^{2}}}}} \\ 0 \\ {\frac{{16\, {C_{13}}}}{{{\pi ^{4}}}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {1.0000} \\ 0 \\ { - 0.4966} \\ 0 \\ {0.0370} \end{array}\displaystyle } \right ] $$
(A.8)
$$ \left [ { \textstyle\begin{array}{c} {{b_{0}}} \\ {{b_{1}}} \\ {{b_{2}}} \\ {{b_{3}}} \\ {{b_{4}}} \end{array}\displaystyle } \right ] = \left [ { \textstyle\begin{array}{c} {{C_{11}} - 4\, {C_{12}} + 16\, {C_{13}}} \\ {\frac{{8\, {C_{12}}}}{\pi } - \frac{{64\, {C_{13}}}}{\pi }} \\ {\frac{{96\, {C_{13}}}}{{{\pi ^{2}}}} - \frac{{4\, {C_{12}}}}{{{\pi ^{2}}}}} \\ { - \frac{{64\, {C_{13}}}}{{{\pi ^{3}}}}} \\ {\frac{{16\, {C_{13}}}}{{{\pi ^{4}}}}} \end{array}\displaystyle } \right ] \approx \left [ { \textstyle\begin{array}{c} {0.2958} \\ {1.4705} \\ { - 1.6953} \\ {0.4651} \\ { - 0.0370} \end{array}\displaystyle } \right ] $$
(A.9)

Appendix B: \(M_{\mathit{CE}}^{k}\) and \({C_{k}^{\mathrm{{den}}}}\) in Eq. (19)

The nonzero components of \(M_{\mathit{CE}}^{k}\) and \({C_{k}^{\mathrm{ {den}}}}\) are:

$$\begin{aligned} &M_{\mathit{CE}}^{1} ( 6,6 )=36e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e+1 )}^{2}},\\ &M_{\mathit{CE}}^{2} ( 6,6 )=36{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e+1 )}^{2}},\\ &M_{\mathit{CE}}^{3} ( 6,6 )=-24{{e}^{2}} {{ \bigl( 1- {{e}^{2}} \bigr)}^{3/2}} {{ ( e+1 )}^{2}},\\ &M_{\mathit{CE}}^{4} ( 3,6 )=48{{ \bigl( 1-{{e}^{2}} \bigr)} ^{7/2}},\\ &M_{\mathit{CE}}^{4} ( 6,6 )=-24\sqrt{1-{{e}^{2}}} {{ ( e+1 )}^{2}} \bigl( - {{e}^{3}}-4{{e}^{2}}+e+4 \bigr),\\ &M_{\mathit{CE}}^{5} ( 1,6 )=-48ae{{ \bigl( {{e}^{2}}-1 \bigr)} ^{4}}, \\ &M_{\mathit{CE}}^{5} ( 2,6 )=48{{ \bigl( {{e}^{2}}-1 \bigr)} ^{4}}, \qquad M_{\mathit{CE}}^{6} ( 1,6 )=48a{{ \bigl( {{e}^{2}}-1 \bigr)} ^{4}},\\ &M_{\mathit{CE}}^{7} ( 1,3 )=-16a{{e}^{2}} {{ \bigl( {{e} ^{2}}-1 \bigr)}^{2}} {{ ( e-1 )}^{3}} ( e+1 ), \\ &M_{\mathit{CE}}^{7} ( 1,6 )=-32a{{e}^{2}} {{ \bigl( {{e} ^{2}}-1 \bigr)}^{2}} {{ ( e-1 )}^{2}} ( e+1 ), \\ &M_{\mathit{CE}}^{7} ( 2,3 )=8e{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{3}} ( e+1 ), \\ &M_{\mathit{CE}}^{7} ( 2,6 )=16e{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{2}} ( e+1 ), \\ &M_{\mathit{CE}}^{7} ( 4,5 )=-2e{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{2}}, \\ &M_{\mathit{CE}}^{8} ( 1,3 )=16ae{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{3}} \bigl( -{{e}^{3}}-{{e}^{2}}+3e+3 \bigr), \\ &M_{\mathit{CE}}^{8} ( 1,6 )=16ae{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{2}} ( e+1 ) \bigl( {{e}^{2}}+3e+6 \bigr), \\ &M_{\mathit{CE}}^{8} ( 2,3 )=-8{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{3}} \bigl( -{{e}^{3}}-{{e}^{2}}+3e+3 \bigr), \\ & \begin{aligned} M_{\mathit{CE}}^{8} ( 2,6 )&=- ( 16e-16 ) {{ ( e-1 )}^{2}} {{ ( e+1 )}^{3}} \\ &\quad {}\times \bigl( {{e} ^{3}}+{{e}^{2}}+e-3 \bigr), \end{aligned} \\ &M_{\mathit{CE}}^{8} ( 4,5 )=2{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} \bigl( {{e}^{2}}+1 \bigr){{ ( e-1 )}^{2}}, \\ &M_{\mathit{CE}}^{9} ( 1,3 )=-16a{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{3}} \bigl( -{{e}^{3}}-{{e}^{2}}+2e+2 \bigr), \\ &M_{\mathit{CE}}^{9} ( 1,6 )=-16a{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{2}} ( e+1 ) \bigl( {{e}^{2}}+3e+4 \bigr), \\ &M_{\mathit{CE}}^{9} ( 2,3 )=8e{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{3}} ( e+1 ), \\ &M_{\mathit{CE}}^{9} ( 2,6 )=-16{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{2}} ( e+1 ), \\ &M_{\mathit{CE}}^{9} ( 4,5 )=-2e{{ \bigl( {{e}^{2}}-1 \bigr)} ^{2}} {{ ( e-1 )}^{2}}, \\ & M_{\mathit{CE}}^{10} ( 1,1 )=-16{{a}^{2}} {{e}^{3}} {{ \bigl( 1-{{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}},\\ &M_{\mathit{CE}}^{10} ( 1,2 )=16a{{e}^{2}} {{ \bigl( 1- {{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )} ^{2}}, \\ &M_{\mathit{CE}}^{10} ( 2,2 )=-4e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}}, \\ &M_{\mathit{CE}}^{10} ( 3,3 )=-4e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} ( e+1 ),\\ &M_{\mathit{CE}}^{10} ( 3,6 )=-16e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{2}} ( e+1 ),\\ &M_{\mathit{CE}}^{10} ( 4,4 )=-e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{2}}, \\ &M_{\mathit{CE}}^{10} ( 5,5 )=-e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} ( e+1 ),\\ & \begin{aligned} M_{\mathit{CE}}^{10} ( 6,6 )&=4e\sqrt{1-{{e}^{2}}} ( e+1 ) \bigl( {{e}^{5}}+{{e}^{4}} \\ &\quad {}+3{{e}^{3}}-5{{e}^{2}}-4e+4 \bigr), \end{aligned} \\ & M_{\mathit{CE}}^{11} ( 1,1 )=48{{a}^{2}} {{e}^{2}} {{ \bigl( 1-{{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}}, \\ & M_{\mathit{CE}}^{11} ( 1,2 )=-48ae{{ \bigl( 1-{{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )} ^{2}}, \\ & M_{\mathit{CE}}^{11} ( 2,2 )=12{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}}, \\ & M_{\mathit{CE}}^{11} ( 3,3 )=4{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} \bigl( -2{{e}^{3}}-2{{e}^{2}}+3e+3 \bigr),\\ & \begin{aligned} M_{\mathit{CE}}^{11} ( 3,6 )&=16\sqrt{1-{{e}^{2}}} {{ ( e-1 )}^{2}} ( e+1 ) \\ &\quad {}\times\bigl( -2{{e}^{3}}-3 {{e}^{2}}+2e+3 \bigr), \end{aligned} \\ & M_{\mathit{CE}}^{11} ( 4,4 )={{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} \bigl( 2{{e}^{2}}+1 \bigr){{ ( e-1 )}^{2}},\\ & M_{\mathit{CE}}^{11} ( 5,5 )={{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} ( e+1 ), \\ & \begin{aligned} M_{\mathit{CE}}^{11} ( 6,6 )&=4\sqrt{1-{{e}^{2}}} ( e+1 ) \bigl( {{e}^{5}}+{{e}^{4}}+3{{e}^{3}} \\ &\quad {}+11{{e}^{2}}-4e-12 \bigr), \end{aligned} \\ & M_{\mathit{CE}}^{12} ( 1,1 )=-48{{a}^{2}}e{{ \bigl( 1- {{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )} ^{2}},\\ & M_{\mathit{CE}}^{12} ( 1,2 )=16a{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} \bigl( {{e}^{2}}+2 \bigr){{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}},\\ & M_{\mathit{CE}}^{12} ( 2,2 )=-12e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}}, \\ & M_{\mathit{CE}}^{12} ( 3,3 )=4e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} \bigl( -{{e}^{3}}-{{e}^{2}}+2e+2 \bigr), \\ & M_{\mathit{CE}}^{12} ( 3,6 )=16{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{2}} \bigl( {{e}^{3}}+4{{e}^{2}}+4e+1 \bigr), \\ & M_{\mathit{CE}}^{12} ( 4,4 )=-e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} \bigl( {{e}^{2}}+2 \bigr){{ ( e-1 )}^{2}}, \\ & M_{\mathit{CE}}^{12} ( 5,5 )=e{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} ( e+1 ), \\ & \begin{aligned} M_{\mathit{CE}}^{12} ( 6,6 )&=-4\sqrt{1-{{e}^{2}}} ( e+1 ) \bigl( {{e}^{6}}+{{e}^{5}}-5{{e}^{4}}-21{{e}^{3}} \\ &\quad {}-4 {{e}^{2}}+20e+8 \bigr), \end{aligned} \\ & M_{\mathit{CE}}^{13} ( 1,1 )=16{{a}^{2}} {{ \bigl( 1- {{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )} ^{2}}, \\ & M_{\mathit{CE}}^{13} ( 1,2 )=-16ae{{ \bigl( 1-{{e}^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )} ^{2}}, \\ & M_{\mathit{CE}}^{13} ( 2,2 )=4{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{4}} {{ ( e+1 )}^{2}}, \\ & M_{\mathit{CE}}^{13} ( 3,3 )=-4{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} \bigl( -3{{e}^{3}}-3{{e}^{2}}+4e+4 \bigr), \\ & M_{\mathit{CE}}^{13} ( 3,6 )=-16{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{2}} ( e+1 ){{ ( e+2 )} ^{2}}, \\ & M_{\mathit{CE}}^{13} ( 4,4 )={{e}^{2}} {{ \bigl( 1-{{e} ^{2}} \bigr)}^{3/2}} {{ ( e-1 )}^{2}} , \\ & M_{\mathit{CE}}^{13} ( 5,5 )=-{{ \bigl( 1-{{e}^{2}} \bigr)} ^{3/2}} {{ ( e-1 )}^{3}} ( e+1 ), \\ & \begin{aligned} M_{\mathit{CE}}^{13} ( 6,6 )&=-4\sqrt{1-{{e}^{2}}} ( e+1 ) \bigl( {{e}^{5}}+9{{e}^{4}}+19{{e}^{3}} \\ &\quad {}+11{{e} ^{2}}-20e-20 \bigr), \end{aligned} \\ &M_{\mathit{CE}}^{l}=p{{e}^{2}} {{ ( 1+e )}^{9/2}} {{ ( 1-e )}^{5/2}}M_{\mathit{CE}}^{l},l=1,2 \cdots 13,\\ &C_{8}^{\text{den}}=-eC,C_{13}^{\text{den}}=C, where C=4{{e}^{2}} {{ \bigl( 1-{{e}^{2}} \bigr)}^{8}}. \end{aligned}$$

Appendix C: \(\dfrac{{d S}}{{d E}}\)

$$\begin{aligned} \dfrac{{dS}}{{dE}} &= - \dfrac{1}{m} \dfrac{{d \Vert {{\mathbf{{M}}^{T}}{\boldsymbol{\lambda }}} \Vert }}{{dE}} \\ & = - \dfrac{1}{m} \dfrac{{{{\boldsymbol{\lambda }}^{T}}{\mathbf{{M}}}}}{{ \Vert {{\mathbf{{M}}^{T}}{\boldsymbol{\lambda }}} \Vert }} \dfrac{{d ( {{\mathbf{{M}}^{T}}{\boldsymbol{\lambda }}} )}}{{dE}} \\ & = - \dfrac{1}{m} \dfrac{{{{\boldsymbol{\lambda }}^{T}}{\mathbf{{M}}}}}{{ \Vert {{\mathbf{{M}}^{T}}{\boldsymbol{\lambda }}} \Vert }} \biggl[ {{ \dfrac{{d ( \mathbf{{M}} )}}{{dE}}}^{T}} {\boldsymbol{\lambda }} + { \mathbf{{M}}^{T}}\dfrac{{d{\boldsymbol{\lambda }}}}{{dE}} \biggr]. \end{aligned}$$
(C.1)

The non-zero terms in \({\dfrac{{\partial {\mathbf{{M}}}}}{{\partial E}}}\) are:

$$\begin{aligned} &\dfrac{{\partial {\mathbf{{M}}} ( {1,2} )}}{{\partial E}} = - \dfrac{{2e\sqrt{{p^{3}}} \sin L}}{{\sqrt{1 - {e^{2}}} w}}, \qquad \dfrac{{\partial {\mathbf{{M}}} ( {2,1} )}}{{\partial E}} = \dfrac{{\sqrt{p} \cos L \, w}}{{\sqrt{1 - {e^{2}}} }}, \\ &\dfrac{{\partial {\mathbf{{M}}} ( {2,2} )}}{{\partial E}} = -\dfrac{{\sqrt{p} \sin L ( {{e^{2}} \cos ^{2}{{ L }} - {e^{2}} + 2\, e \cos L + 2} )}}{{\sqrt{1 - {e^{2}}} \, w}}, \\ &\dfrac{{\partial {\mathbf{{M}}} ( {3,1} )}}{{\partial E}} =\dfrac{{\sqrt{p} \sin L \, w}}{{\sqrt{1 - {e^{2}}} }}, \\ &\dfrac{{\partial {\mathbf{{M}}} ( {3,2} )}}{{\partial E}} = \dfrac{{\sqrt{p} ( {{e^{2}} \cos ^{3} {{L}} + 2\, e \cos ^{2} {{ L }} + e + 2 \cos L} )}}{{\sqrt{1 - {e^{2}}} \, w}}, \\ &\dfrac{{\partial {\mathbf{{M}}} ( {4,3} )}}{{\partial E}} = - \dfrac{{\sqrt{p} \sin L }}{{2\, \sqrt{1 - {e^{2}}} \, w}}, \\ &\dfrac{{\partial {\mathbf{{M}}} ( {5,3} )}}{{\partial E}} = \dfrac{{\sqrt{p} ( {e + \cos L } ) }}{{2\, \sqrt{1 - {e^{2}}} \, w}}, \\ &\dfrac{{d{\boldsymbol{\lambda }}}}{{dE}} = \dfrac{1}{{\sqrt{1 - {e^{2}}} }} \left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&0&0&0&0&{ - \frac{{3 ( {e \cos L + 1} )}}{{2\, p}}} \\ 0&0&0&0&0&{2 \cos L} \\ 0&0&0&0&0&{2 \sin L} \\ 0&0&0&0&0&0 \\ 0&0&0&0&0&0 \\ 0&0&0&0&0&{ - 2\, e \sin L } \end{array}\displaystyle \right )^{T}{\boldsymbol{\lambda }}, \end{aligned}$$

where \(w = 1+e\cos L\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Li, H. & Jiang, F. Polynomial-based method for determining coast-terminating zero of fuel-optimal time-fixed trajectory. Astrophys Space Sci 365, 8 (2020). https://doi.org/10.1007/s10509-020-3721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-3721-y

Keywords

Navigation