Skip to main content
Log in

Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Linear and nonlinear propagation characteristics of drift ion acoustic waves are analyzed in an inhomogeneous plasma comprising of warm ions having shear flow parallel to the magnetic field and electrons that are followed by a distribution which is dictated by spectral indices, \(r\) and \(q\) in low and high phase density regions. In the linear regime, the dispersion relation of the drift-ion acoustic wave is derived and the condition for the onset of shear flow instability is presented. It is found that condition for the emergence of shear flow instability gets modified by generalized \((r,q)\) distribution and ion to electron temperature ratio. In the nonlinear regime, vortex formation with non-Maxwellian electron distribution is investigated and the effects of low and high energy electrons in this context are explored in detail. Interestingly, it is found that unlike the dipolar vortices, the electrons in the high phase space density regions do not significantly affect the Kelvin-Stuart’s cat’s eyes structures, however, the converse is true for the electrons belonging to the regions of low phase space density. Estimates of the size of these vortex structures in space plasmas are also given where the distribution function presented here is frequently encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, G.E., Masood, W., Mirza, A.M.: Phys. Plasmas 23, 0223021 (2016)

    Google Scholar 

  • Ali, G.E., Ahmad, A., Masood, W., Mirza, A.M.: Braz. J. Phys. 47, 617 (2017)

    ADS  Google Scholar 

  • Asano, Y., Nakamura, R., Shinohara, I., Fujimoto, M., Takada, T., Baumjohann, W., Owen, C.J., Fazakerley, A.N., Runov, A., Nagai, T., Lucek, E.A., Re’me, H.: J. Geophys. Res. 113, A01207 (2008)

    ADS  Google Scholar 

  • Balikhin, M., Gedalin, M., Petrukovich, A.: Phys. Rev. Lett. 70, 1259 (1993)

    ADS  Google Scholar 

  • Buchel’nikova, N.S., Salimov, R.A., Eidel’man, Y.I.: J. Appl. Mech. Tech. Phys. 9, 293 (1968)

    ADS  Google Scholar 

  • Chen, F.F.: Phys. Fluids 7, 949 (1964)

    ADS  Google Scholar 

  • D’Angelo, N., Motley, R.W.: Phys. Fluids 6, 422 (1963)

    ADS  Google Scholar 

  • Ergun, R.E., Andersson, L., Main, D., Su, Y.J., Newman, D.L., Goldman, M.V., Carlson, C.W., Hull, A.J., McFadden, J.P., Mozer, F.S.: J. Geophys. Res. 109, A12220 (2004)

    ADS  Google Scholar 

  • Erokhin, N.S., Shalimov, S.A.: Proceedings of the International Conference MSS-04, Moscow URSS (2004)

    Google Scholar 

  • Feldman, W.C., Anderson, R.C., Bame, S.J., Gary, S.P., Gosling, J.T., Mccomas, D.J., Thomsen, M.F., Paschmann, G., Hoppe, M.M.: J. Geophys. Res. 88, 96 (1983)

    ADS  Google Scholar 

  • Formisano, V., Moreno, G., Palmiotto, F.: J. Geophys. Res. 78, 3714 (1973)

    ADS  Google Scholar 

  • Galeev, A.A.: Collisionless Shocks in Physics of Solar Planetary Environment. AGU, Washington (1976)

    Google Scholar 

  • Gdalevich, G.L., Izhovkina, N.I., Ozerov, V.D.: Cosm. Res. 41, 230 (2003)

    ADS  Google Scholar 

  • Gdalevich, G.L., Izhovkina, N.I., Ozerov, V.D., Bankov, N., Chapkanov, S., Todorieva, L.: Cosm. Res. 44, 419 (2006)

    ADS  Google Scholar 

  • Gloeckler, G., Fisk, L.A.: Astrophys. J. 648, L63 (2006)

    ADS  Google Scholar 

  • Goodrich, C.C., Scudder, J.D.: J. Geophys. Res. 89, 6654 (1984)

    ADS  Google Scholar 

  • Hasegawa, A., Mima, K.: Phys. Fluids 21, 87 (1978)

    ADS  MathSciNet  Google Scholar 

  • Hasegawa, A., Mima, K., Van Duong, M.: Phys. Rev. Lett. 54, 2608 (1985)

    ADS  Google Scholar 

  • Hirono, Y., Kharzeev, D.E., Sadofyev, A.V.: Phys. Rev. Lett. 121, 1423011 (2018)

    Google Scholar 

  • Horton, W.: Rev. Mod. Phys. 71, 735 (1999)

    ADS  Google Scholar 

  • Hull, A.J., Scudder, J.D., Larson, D.E., Lin, R.: J. Geophys. Res. 106, 15,711 (2001)

    ADS  Google Scholar 

  • Izhovkina, N.I.: Geomagn. Aeron. 50, 362 (2010)

    ADS  Google Scholar 

  • Izhovkina, N.I., Shutte, N.M., Pulinets, S.A.: Geomagn. Aeron. 40, 523 (2000)

    Google Scholar 

  • Jorge, R., Ricci, P., Loureiro, N.F.: Phys. Rev. Lett. 121, 165001 (2018)

    ADS  Google Scholar 

  • Kadomtsev, B.B.: Plasma Turbulence. Academic Press, New York (1965)

    Google Scholar 

  • Kadomtsev, B.B., Timofeev, A.V.: Sov. Phys. Dokl. 7, 826 (1963)

    ADS  Google Scholar 

  • Khalid, S., Qureshi, M.N.S., Masood, W.: Phys. Plasmas 26, 092114 (2019)

    ADS  Google Scholar 

  • Krall, N.A., Rosenbluth, M.N.: Phys. Fluids 6, 254 (1963)

    ADS  MathSciNet  Google Scholar 

  • Lembe’ge, B., Savoini, P., Balikhin, M., Walker, S., Krasnoselskikh, V.: J. Geophys. Res. 108(A6), 1256 (2003)

    Google Scholar 

  • Leubner, M.P.: Astrophys. Space Sci. 282, 573 (2002)

    ADS  Google Scholar 

  • Leubner, M.P.: Phys. Plasmas 11, 1308 (2004)

    ADS  Google Scholar 

  • Malik, M.U., Masood, W., Qureshi, M.N.S., Mirza, A.M.: AIP Adv. 8, 0552271 (2018)

    Google Scholar 

  • Marshall, E.M., Ellis, R.F., Walsh, J.E.: Plasma Phys. Control. Fusion 28, 1461 (1986)

    ADS  Google Scholar 

  • Masood, W., Schwartz, S.J.: J. Geophys. Res. 113, A012161 (2008)

    Google Scholar 

  • Masood, W., Schwartz, S.J., Maksimovic, M., Fazakerley, A.N.: Ann. Geophys. 24, 1725 (2006)

    ADS  Google Scholar 

  • Masood, W., Zahoor, S., Ali, G.E., Ahmad, A.: Phys. Plasmas 23, 0921041 (2016)

    Google Scholar 

  • Masood, W., Aziz, T., Shah, H.A.: Phys. Plasmas 25, 092306 (2018)

    ADS  Google Scholar 

  • Mirza, A.M., Farid, T., Shukla, P.K., Stenflo, L.: IEEE Trans. Plasma Sci. 29, 298 (2001)

    ADS  Google Scholar 

  • Mirza, A.M., Masood, W., Iqbal, J., Batool, N.: Phys. Plasmas 22, 0923131 (2015)

    Google Scholar 

  • Naeem, I., Masood, W., Mirza, A.M.: Phys. Scr. 94, 125603 (2019)

    ADS  Google Scholar 

  • Naulin, V., Spatschek, K.H.: Phys. Rev. E 55, 5883 (1997)

    ADS  Google Scholar 

  • Pokhotelov, O.A., Onishchenko, O.G., Shukla, P.K., Stenflo, L.: J. Geophys. Res. 104, 19797 (1999)

    ADS  Google Scholar 

  • Qureshi, M.N.S., Shah, H.A., Murtaza, G., Schwartz, S.J., Mahmood, F.: Phys. Plasmas 11, 3819 (2004)

    ADS  Google Scholar 

  • Qureshi, M.N.S., Nasir, W., Masood, W., Yoon, P.H., Shah, H.A., Schwartz, S.J.: J. Geophys. Res. 119, 10,059 (2014)

    Google Scholar 

  • Qureshi, M.N.S., Nasir, W., Bruno, R., Masood, W.: Mon. Not. R. Astron. Soc. 488, 954 (2019a)

    ADS  Google Scholar 

  • Qureshi, M.N.S., Shah, K.H., Shi, J., Masood, W., Shah, H.A.: Contrib. Plasma Phys. (2019b). https://doi.org/10.1002/ctpp.201900065

    Article  Google Scholar 

  • Rudakov, L.I., Sagdeev, R.Z.: Sov. Phys. Dokl. 6, 415 (1961)

    ADS  Google Scholar 

  • Scudder, J.D., Lind, D.L., Ogilvie, K.W.: J. Geophys. Res. 78, 6535 (1973)

    ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L.: Eur. Phys. J. D 20, 103 (2002)

    ADS  Google Scholar 

  • Shukla, P.K., Yu, M.Y., Stenflo, L.: Phys. Rev. A 34, 3478 (1986)

    ADS  Google Scholar 

  • Shukla, P.K., Farid, T., Stenflo, L., Onishchenko, O.G.: J. Plasma Phys. 64, 427 (2000)

    ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L., Wiklund, K.: Phys. Lett. A 283, 371 (2001)

    ADS  Google Scholar 

  • Spatschek, K.H., Laedke, E.W., Marquardt, C., Musher, S., Wenk, H.: Phys. Rev. Lett. 64, 3027 (1990)

    ADS  Google Scholar 

  • Tasso, H.: Phys. Lett. A 24, 618 (1967)

    ADS  Google Scholar 

  • Treumann, R.A.: Phys. Scr. 59, 19 (1999)

    ADS  Google Scholar 

  • Treumann, R.A., Jaroschek, C.H.: Phys. Rev. Lett. 100, 1550051 (2008)

    Google Scholar 

  • Ullah, S., Masood, W., Siddiq, M., Rizvi, H.: Phys. Scr. 94, 125604 (2019)

    ADS  Google Scholar 

  • Weiland, J.: Collective Modes in Inhomogeneous Plasma. IOP, Bristol (2000)

    Google Scholar 

  • Wu, D.J., Huang, G.L., Wang, D.Y.: Phys. Rev. Lett. 77, 4346 (1996)

    ADS  Google Scholar 

  • Zaheer, S., Yoon, P.H.: Astrophys. J. 775, 108 (2013)

    ADS  Google Scholar 

  • Zechner, G., Lang, W., Domailov, M., Bodea, M.A., Pedarnig, J.D.: Phys. Rev. B 98, 1045081 (2018)

    Google Scholar 

  • Zhu, H., Zhou, Y., Ruiz, D.E., Dodin, I.Y.: Phys. Rev. E 97, 0532101 (2018)

    Google Scholar 

Download references

Acknowledgements

One of the authors, W. Masood acknowledges the research grant given by HEC under the project No. 20-3021/NRPU/ R&D/HEC/14. This work was partially supported by the Higher Education Commission (HEC) project under Grant 7632/Federal/NRPU/R&D/HEC/2017 and Quaid-i-Azam University Research Fund (URF Project 2019-2020).

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, I., Masood, W. & Mirza, A.M. Dipolar and Kelvin-Stuart’s cat’s eyes vortices in magnetoplasmas with non-Maxwellian electron distribution. Astrophys Space Sci 365, 52 (2020). https://doi.org/10.1007/s10509-020-03759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03759-9

Keywords

Navigation