Skip to main content
Log in

Stationarity and periodicities of linear speed of coronal mass ejection: a statistical signal processing approach

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this paper initiative has been taken to search the periodicities of linear speed of Coronal Mass Ejection in solar cycle 23. Double exponential smoothing and Discrete Wavelet Transform are being used for detrending and filtering of the CME linear speed time series. To choose the appropriate statistical methodology for the said purpose, Smoothed Pseudo Wigner-Ville distribution (SPWVD) has been used beforehand to confirm the non-stationarity of the time series. The Time-Frequency representation tool like Hilbert Huang Transform and Empirical Mode decomposition has been implemented to unearth the underneath periodicities in the non-stationary time series of the linear speed of CME. Of all the periodicities having more than 95% Confidence Level, the relevant periodicities have been segregated out using Integral peak detection algorithm. The periodicities observed are of low scale ranging from 2–159 days with some relevant periods like 4 days, 10 days, 11 days, 12 days, 13.7 days, 14.5 and 21.6 days. These short range periodicities indicate the probable origin of the CME is the active longitude and the magnetic flux network of the sun. The results also insinuate about the probable mutual influence and causality with other solar activities (like solar radio emission, \(A_{p}\) index, solar wind speed, etc.) owing to the similitude between their periods and CME linear speed periods. The periodicities of 4 days and 10 days indicate the possible existence of the Rossby-type waves or planetary waves in Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://cdaw.gsfc.nasa.gov/CME_list/index.html.

References

  • Alfaouri, M., Daqrouq, K.: ECG signal denoising by wavelet transform thresholding. Am. J. Appl. Sci. 5(3), 276–281 (2008)

    Article  Google Scholar 

  • Azzini, I., Dell’Anna, R., Ciocchetta, F., Demichelis, F., Sboner, A., Blanzieri, E., Malossini, A.: Simple methods of peak detection in time series microarray data. In: CAMDA’04 (Critical Assessment of Microarray Data) (2004)

    Google Scholar 

  • Bai, T.: Periodicities in solar flare occurrence: analysis of cycles 19–23. Astrophys. J. 591, 406–415 (2003)

    Article  ADS  Google Scholar 

  • Bakere, et al.: Severe space weather events—understanding societal and economic impacts. A workshop report, The National Academies Press, Washington (2008)

  • Brown, R., Meyer, R.: The fundamental theory of exponential smoothing. Oper. Res. 9, 673–685 (1961)

    Article  MATH  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162(1), 357–402 (1995)

    Article  ADS  Google Scholar 

  • Cai, C., Harrington, P.: Different discrete wavelet transforms applied to denoising analytical data. J. Chem. Inf. Comput. Sci. 38(6), 1161–1170 (1998)

    Article  Google Scholar 

  • Chui, C.K., Montefusco, L., Puccio, L.: Wavelets: Theory, Algorithms, and Applications, vol. 5. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  • Cohen, L.: Time-Frequency Analysis: Theory and Applications. Prentice-Hall Press, Upper Saddle River (1995)

    Google Scholar 

  • Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  • Donoho, D., Johnstone, I.: Ideal spatial adaptation by wavelet. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Fraser-Smith, A.C.: Spectrum of the geomagnetic activity index Ap. J. Geophys. Res. 77, 4209–4220 (1972)

    Article  ADS  Google Scholar 

  • Gao, P., Li, Q., Zhong, S.: Distribution of latitudes and speeds of coronal mass ejections in the northern and southern hemispheres in cycle 23. J. Astrophys. Astron. 28, 207–215 (2007)

    Article  ADS  Google Scholar 

  • Gloerson, P., Huang, N.: Comparison of interannual intrinsic modes in hemispheric sea ice covers and others geophysical parameters. IEEE Trans. Geosci. Remote Sens. 41(5), 1062–1074 (2003)

    Article  ADS  Google Scholar 

  • Goel, P., Vidakovic, B.: Wavelet transformations as diversity enhancers. ISDS Discussion Paper Duke University, 95(4), 21

  • Gonzalez, A.L., Gonzalez, W.D., Dutra, S.L., Tsurutani, B.T.: Periodic variation in the geomagnetic activity: a study based on the Ap index. J. Geophys. Res. 98(A6), 9215–9231 (1993)

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: The SOHO/LASCO CME catalog. Earth Moon Planets 104(1), 295–313 (2009)

    Article  ADS  Google Scholar 

  • Hady, A.A.: The periodicities of solar X-ray flares and coronal mass ejections during solar cycle 23. Proc. Int. Astron. Union 2004(223), 107–108 (2004)

    Article  Google Scholar 

  • Howard, T., Tappin, S.: Statistical survey of earthbound interplanetary shocks, associated coronal mass ejections and their space weather consequences. Astron. Astrophys. 440, 373–383 (2005)

    Article  ADS  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. 454A, 903–995 (1998)

    Article  ADS  MATH  Google Scholar 

  • Ivanov, E.V., Obridko, V.N.: Zonal structure and meridional drift of large scale solar magnetic fields. Sol. Phys. 206, 1–19 (2002)

    Article  ADS  Google Scholar 

  • Joshi, B., Pant, P., Manoharan, P.: Periodicities in sunspot activity during solar cycle 23 (research note). Astron. Astrophys. 452, 647–650 (2006)

    Article  ADS  Google Scholar 

  • Kane, R.P.: Periodicities in the time series of solar coronal radio emissions and chromospheric uv emission lines. Sol. Phys. 205(2), 351–359 (2002)

    Article  ADS  Google Scholar 

  • Kane, R., Vats, H., Sawant, H.: Short-term periodicities in the time series of solar radio emissions and different solar altitudes. Sol. Phys. 201, 181–190 (2001)

    Article  ADS  Google Scholar 

  • Khondekar, M.H., Ghosh, D.N., Ghosh, K.: Scaling analysis by FVSM and DWT denoising of the measured values of solar irradiance. Int. J. Inf. Comput. Sci. 12(2), 1–9 (2009)

    Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Gopalswamy, N., Ozguc, A., Rozelot, J.P.: Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys. J. 727(1), 44 (2010)

    Article  ADS  Google Scholar 

  • Michalek, G.: An asymmetric cone model for halo coronal mass ejections. Sol. Phys. 237, 101–118 (2006). doi:10.1007/s11207-006-0075-8

    Article  ADS  Google Scholar 

  • Mursula, K., Zieger, B.: The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: the last three solar cycles. J. Geophys. Res. 101(A12), 27077–27090 (1996)

    Article  ADS  Google Scholar 

  • Mursula, K., Zieger, B.: The 1.3 year variation in solar wind speed and geomagnetic activity. Adv. Space Res. 25(9), 1939–1942 (2000)

    Article  ADS  Google Scholar 

  • Nayar, S.: Periodicities in solar activity and their signature in the terrestrial environment. ILWS WORKSHOP, Goa: ILWS Workshop (2006)

  • Nayar, S.R., Nair, V.S., Radhika, V.N.: Short period features of the interplanetary plasma and their evolution. Sol. Phys. 201, 405–417 (2001)

    Article  ADS  Google Scholar 

  • Nayar, S.R., Radhika, V.N., Revathy, K.: Wavelet analysis of periodicities in interplanetary medium. Sol. Phys. 212, 207–211 (2002)

    Google Scholar 

  • Nikonova, M., Klochek, N., Palamarchuk, L.: Quasi-10-day and 4-day periodicities in solar irradiance. In: Deubner, F., Dalsgaard, J., Kurtz, D. (eds.) International Astronomical Union. Symposium No. 185, Kyoto, pp. 18–22 (1997)

    Google Scholar 

  • Özgüç, A., Ataç, T., Rybak, J.: Evaluation of the short-term periodicities in the flare index between the years 1966–2002. Sol. Phys. 223, 287–304 (2004)

    Article  ADS  Google Scholar 

  • Pap, J., Bouwer, S.D., Tobiska, W.K.: Periodicities of solar irradiance and solar activity indices. Sol. Phys. 129, 165–189 (1990)

    Article  ADS  Google Scholar 

  • Plunkett, S.P., Wu, S.T.: Coronal mass ejections (CME) and their geoeffectiveness. IEEE Trans. Plasma Sci. 28(6), 1807–1817 (2000)

    Article  ADS  Google Scholar 

  • Polikar, R.: Wavelet tutorial-Book (1999, March). Retrieved from http://users.rowan.edu

  • Pulkkinen, T.: Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4 (2007)

  • Qian, S.: Introduction to Time Frequency and Wavelet Transforms. Prentice Hall, New York (2001)

    Google Scholar 

  • Raychaudhuri, P., Ghosh, K., Mandal, A.: Time variations of the superkamiokande solar flux data. In: 29th International Cosmic Ray Conference, Pune (2005)

    Google Scholar 

  • Sarkar, T., Ray, R., Khondekar, M.H., Ghosh, K., Banerjee, S.: Chaos and periodicity in solar wind speed: cycle 23. Astrophys. Space Sci. 357 (2015)

  • Shapiro, R., Ward, F.: Three peaks near 27 days in high resolution spectrum of the international magnetic character figure Ci. J. Geophys. Res. 71(9), 2385–2388 (1966)

    Article  ADS  Google Scholar 

  • Sturroch, P.: Evidence for R-mode oscillation in super-Kamiokande solar. Sol. Phys. 252(2), 221–233 (2008)

    Article  ADS  Google Scholar 

  • Sun, K., Jin, T., Yang, D.: An improved time-frequency analysis method in interference detection for GNSS receivers. Sensors 15, 9404–9426 (2015)

    Article  Google Scholar 

  • Temmer, M., Vršnak, B., Veronig, A.: Periodic appearance of coronal holes and the related variation of solar wind parameters. Sol. Phys. 241(2), 371–383 (2007)

    Article  ADS  Google Scholar 

  • Vourlidas, A., Buzasi, D., Howard, R., Esfandiari, E.: Solar variability: from core to outer frontiers. In: ESA SP, vol. 506, pp. 91–94 (2002)

    Google Scholar 

  • Ward, F.W.: The variance (power) spectra of Ci, Kp, and Ap. J. Geophys. Res. 65(8), 2359–2379 (1960)

    Article  ADS  Google Scholar 

  • Xie, H., Gopalswamy, N., Manoharan, P.K., Lara, A., Yashiro, S., Lepri, S.: Long-lived geomagnetic storms and coronal mass ejections. J. Geophys. Res. Space Phys. 111(A1), 2–17 (2006). doi:10.1029/2005JA011287

    Article  Google Scholar 

  • Ye, N., Zhu, F., Zhou, X., Jia, H.: Short-term periodicity in solar mean magnetic field during activity maximum and minimum periods. Sol. Phys. 279(2), 411–418 (2012)

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., Gopalswamy, N.: Statistical distributions of speeds of coronal mass ejections. Astrophys. J. 619, 599–603 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mofazzal Hossain Khondekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Khondekar, M.H. & Bhattacharjee, A.K. Stationarity and periodicities of linear speed of coronal mass ejection: a statistical signal processing approach. Astrophys Space Sci 362, 179 (2017). https://doi.org/10.1007/s10509-017-3157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3157-1

Keywords

Navigation