Advertisement

Indexing of exoplanets in search for potential habitability: application to Mars-like worlds

  • Madhu Kashyap JagadeeshEmail author
  • Shivappa B. Gudennavar
  • Urmi Doshi
  • Margarita Safonova
Original Article

Abstract

Study of exoplanets is one of the main goals of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth—the Earth’s twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity, it is difficult to determine its value. Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets.

ESI is a first step in determining potential exo-habitability that may not be very similar to a terrestrial life. A new approach, called Mars Similarity Index (MSI), is introduced to identify planets that may be habitable to the extreme forms of life. MSI is defined in the range between 1 (present Mars) and 0 (dissimilar to present Mars) and uses the same physical parameters as ESI. We are interested in Mars-like planets to search for planets that may host the extreme life forms, such as the ones living in extreme environments on Earth; for example, methane on Mars may be a product of the methane-specific extremophile life form metabolism.

Keywords

Earth-like planets Habitability Astrobiology 

Notes

Acknowledgements

We would like to thank Jayant Murthy (Indian Institute of Astrophysics, Bangalore) and Yuri Shchekinov (Lebedev Institute, Moscow) for the fruitful discussions. This research has made use of the Extrasolar Planets Encyclopaedia at http://www.exoplanet.eu, Exoplanets Data Explorer at http://exoplanets.org, the Habitable Zone Gallery at http://www.hzgallery.org/, the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program at http://exoplanetarchive.ipac.caltech.edu/ and NASA Exoplanet Archive at http://exoplanetarchive.ipac.caltech.edu and NASA Astrophysics Data System Abstract Service.

References

  1. Abramov, O., Mojzsis, S.J.: Earth Planet. Sci. Lett. 442, 108 (2016) ADSCrossRefGoogle Scholar
  2. Barlow, N.: Mars: An Introduction to Its Interior, Surface and Atmosphere. Cambridge Planetary Science, vol. 8. Cambridge University Press, Cambridge (2014). doi: 10.1017/CBO9780511536069 Google Scholar
  3. Barnes, R., Meadows, V. S., Evans, N., et al.: Astrophys. J. 814, 2 (2015) CrossRefGoogle Scholar
  4. Batalha, N.M., Rowe, J.F., Bryson, S.T., et al.: Astrophys. J. Suppl. Ser. 204, 24 (2013) ADSCrossRefGoogle Scholar
  5. Bell, E.A., Boehnke, P., Harrison, T.M., Mao, W.L.: Proc. Natl. Acad. Sci. USA 112, 14518 (2015). doi: 10.1073/pnas.1517557112 ADSCrossRefGoogle Scholar
  6. Bloom, S.A.: Mar. Ecol. Prog. Ser. 5, 125 (1981) CrossRefGoogle Scholar
  7. Bora, K., Saha, S., Agrawal, S., Safonova, M., Routh, S., Narasimhamurthy, A.: Astron. Comput. 17, 129 (2016) ADSCrossRefGoogle Scholar
  8. Borucki, W.J., Koch, D.G., Basri, G., et al.: Astrophys. J. 736, 19 (2011) ADSCrossRefGoogle Scholar
  9. Bray, J.R., Curtis, J.T.: Ecol. Monogr. 27, 325 (1957) CrossRefGoogle Scholar
  10. Carone, L., Keppens, R., Decin, L.: Mon. Not. R. Astron. Soc. 461, 1981–2002 (2016). doi: 10.1093/mnras/stw1265 ADSCrossRefGoogle Scholar
  11. Cha, S.-H.: Int. J. Math. Models Methods Appl. Sci. 1, 300 (2007) Google Scholar
  12. Chen, J., Kipping, D.: Astrophys. J. 834, 17 (2017) ADSCrossRefGoogle Scholar
  13. Deza, E., Deza, M.: Encyclopedia of Distances, 4th revised edn. Springer, Berlin (2016). ISBN 978-3-662-52844-0 CrossRefzbMATHGoogle Scholar
  14. Dorn, R.I., Oberlander, T.M.: Science 213, 1245 (1981) ADSCrossRefGoogle Scholar
  15. Fressin, F., Torres, G., Rowe, J.F., et al.: Nature 482, 195 (2012) ADSCrossRefGoogle Scholar
  16. Grasset, O., Mocquet, D., Sotin, C.: Icarus 191, 337 (2007) ADSCrossRefGoogle Scholar
  17. Greenacre, M., Primicerio, R.: In: Multivariate Analysis of Ecological Data. Fundaciön BBVA, Madrid (2013). ISBN 978-84-92937-50-9 Google Scholar
  18. Grotzinger, J.P., Gupta, S., Malin, M.C., et al.: Science 350, 6257 (2015) CrossRefGoogle Scholar
  19. Hadden, S., Lithwick, Y.: Astrophys. J. 787, 80 (2014) ADSCrossRefGoogle Scholar
  20. Hu, R., Bloom, A.A., Gao, P., Miller, C.E., Yung, Y.L.: Astrobiology 16(7), 539–550 (2016). doi: 10.1089/ast.2015.1410 ADSCrossRefGoogle Scholar
  21. Jennings, D.E., Cottini, V., Nixon, C.A., et al.: Astrophys. J. Lett. 816, L17 (2016) ADSCrossRefGoogle Scholar
  22. Jheeta, S.: Astrophys. Space Sci. 348, 1–10 (2013). doi: 10.1007/s10509-013-1536-9 ADSCrossRefGoogle Scholar
  23. Jontof-Hutter, D., Rowe, J.F., Lissauer, J.J., Fabrycky, D.C., Ford, E.B.: Nature 522, 321–323 (2015) ADSCrossRefGoogle Scholar
  24. Kaltenegger, L., Sasselov, D.: Astrophys. J. 736, L25 (2011). doi: 10.1088/2041-8205/736/2/L25 ADSCrossRefGoogle Scholar
  25. Kashyap, J.M., Safonova, M., Gudennavar, S.B.: ESI and MSI data sets2. Mendeley Data, v. 8 (2017). doi: 10.17632/c37bvvxp3z.8
  26. Kindt, R., Coe, R.: Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre (ICRAF), Nairobi (2005). ISBN 92-9059-179-X Google Scholar
  27. Kreuzer-Martin, H.W., Ehleringer, J.R., Hegg, E.L.: Proc. Natl. Acad. Sci. USA 102, 17337 (2005) ADSCrossRefGoogle Scholar
  28. Krinsley, D.H., Dorn, R.I., DiGregorio, B.E., Langworthy, K.A., Ditto, J.: Geomorphology 138, 339 (2012) ADSCrossRefGoogle Scholar
  29. Looman, J., Campbell, J.B.: Ecology 41(3), 409 (1960) CrossRefGoogle Scholar
  30. Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., Santosh, M.: Geosci. Front. 4(2), 141 (2013). doi: 10.1016/j.gsf.2012.11.001 CrossRefGoogle Scholar
  31. Mascaro, J.: Astrobiology 11, 1053 (2011) ADSCrossRefGoogle Scholar
  32. Melosh, H.J., Vickery, A.M.: Nature 338, 487 (1989) ADSCrossRefGoogle Scholar
  33. Onofri, S., de Vera, J.-P., et al.: Astrobiology 15(12), 1052 (2015) ADSCrossRefGoogle Scholar
  34. Petigura, E., Marcy, G.W., Howard, A., et al.: AAS/Division for Extreme Solar Systems Abstracts, 3, 501.02 (2015) Google Scholar
  35. Safonova, M., Murthy, J., Shchekinov, Y.A.: Int. J. Astrobiol. 15, 93 (2016) CrossRefGoogle Scholar
  36. Schulz, J.: Bray-Curtis dissimilarity. Algorithms—Similarity. Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany. http://www.code10.info/. Retrieved 01/06/2016
  37. Schulze-Makuch, D., Méndez, A., Fairén, A.D., et al.: Astrobiology 11, 1041 (2011a) ADSCrossRefGoogle Scholar
  38. Schulze-Makuch, D., Shirin Haque, S., de Sousa Antonio, M.R., et al.: Astrobiology 11(3), 241 (2011b) ADSCrossRefGoogle Scholar
  39. Seager, S.: In: Seager, S. (ed.) Exoplanets, p. 526. University of Arizona Press, Tucson (2010) Google Scholar
  40. Steffen, J.H., Fabrycky, D.C., Agol, E., et al.: Mon. Not. R. Astron. Soc. 428, 1077 (2013) ADSCrossRefGoogle Scholar
  41. Tung, H.C., Bramall, N.E., Price, P.B.: Proc. Natl. Acad. Sci. USA 102, 18292 (2005) ADSCrossRefGoogle Scholar
  42. Turnbull, M.C., Glassman, T., Roberge, A., et al.: Publ. Astron. Soc. Pac. 124, 418 (2012) ADSCrossRefGoogle Scholar
  43. Volokin, D., ReLlez, L.: SpringerPlus 3, 723 (2014). doi: 10.1186/2193-1801-3-723 CrossRefGoogle Scholar
  44. Volokin, D., ReLlez, L.: Adv. Space Res. (2015). doi: 10.1016/j.asr.2015.08.006 Google Scholar
  45. Waltham, D.: Icarus 215, 518 (2011) ADSCrossRefGoogle Scholar
  46. Webster, C.R., Mahaffy, P.R., Flesch, G.J., et al.: Science 341, 260 (2013) ADSCrossRefGoogle Scholar
  47. Webster, C.R., Mahaffy, P.R., et al.: Science 347, 415 (2015) ADSCrossRefGoogle Scholar
  48. Williams, D.R.: NASA Planetary Factsheet (2014). http://nssdc.gsfc.nasa.gov/planetary/factsheet/
  49. Wordsworth, R.D.: Annu. Rev. Earth Planet. Sci. 44, 381 (2016) ADSCrossRefGoogle Scholar
  50. Wray, J.J., Murchie, S.L., Bishop, J.L., et al.: J. Geophys. Res., Planets 121, 652 (2016) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of PhysicsChrist UniversityBengaluruIndia
  2. 2.M.P. Birla Institute of Fundamental ResearchBangaloreIndia

Personalised recommendations