Skip to main content
Log in

The study of correlation among different scattering parameters in an aggregate dust model

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We study the light scattering properties of aggregate particles in a wide range of complex refractive indices (\(m = n + i k\), where \(1.4 \le n \le 2.0\), \(0.001 \le k \le1.0\)) and wavelengths (\(0.45 \le \lambda\le1.25 \mbox{ }\upmu \mbox{m}\)) to investigate the correlation among different parameters e.g., the positive polarization maximum (\(P_{\mathrm{max}}\)), the amplitude of the negative polarization (\(P_{\mathrm{min}}\)), geometric albedo (\(A\)), \((n,k)\) and \(\lambda\). Numerical computations are performed by the Superposition T-matrix code with Ballistic Cluster–Cluster Aggregate (BCCA) particles of 128 monomers and Ballistic Aggregates (BA) particles of 512 monomers, where monomer’s radius of aggregates is considered to be 0.1 μm. At a fixed value of \(k\), \(P_{\mathrm{max}}\) and \(n\) are correlated via a quadratic regression equation and this nature is observed at all wavelengths. Further, \(P_{\mathrm{max}}\) and \(k\) are found to be related via a polynomial regression equation when \(n\) is taken to be fixed. The degree of the equation depends on the wavelength, higher the wavelength lower is the degree. We find that \(A\) and \(P_{\mathrm{max}}\) are correlated via a cubic regression at \(\lambda= 0.45\mbox{ }\upmu \mbox{m}\) whereas this correlation is quadratic at higher wavelengths. We notice that \(|P_{\mathrm{min}}|\) increases with the decrease of \(P_{\mathrm{max}}\) and a strong linear correlation between them is observed when \(n\) is fixed at some value and \(k\) is changed from higher to lower value. Further, at a fix value of \(k\), \(P_{\mathrm{min}}\) and \(P_{\mathrm{max}}\) can be fitted well via a quartic regression equation when \(n\) is changed from higher to lower value. We also find that \(P_{\mathrm{max}}\) increases with \(\lambda\) and they are correlated via a quartic regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. The coefficient of determination is a key output of regression analysis which is interpreted as the proportion of the variance in the dependent variable that is predictable from the independent variable. It ranges from 0 to 1, where a higher coefficient is an indicator of a better goodness of fit for the observations.

References

  • Bertini, I., Thomas, N., Barberi, C.: Astron. Astrophys. 461, 351 (2007)

    Article  ADS  Google Scholar 

  • Das, H.S., Das, S.R., Paul, T., Suklabaidya, A., Sen, A.K.: Mon. Not. R. Astron. Soc. 389, 787 (2008a)

    Article  ADS  Google Scholar 

  • Das, H.S., Das, S.R., Sen, A.K.: Mon. Not. R. Astron. Soc. 390, 1195 (2008b)

    Article  ADS  Google Scholar 

  • Das, H.S., Paul, D., Suklabaidya, A., Sen, A.K.: Mon. Not. R. Astron. Soc. 416, 94 (2011)

    Article  ADS  Google Scholar 

  • Draine, B.T., Flatau, P.J.: J. Opt. Soc. Am. A 11, 1491 (1994)

    Article  ADS  Google Scholar 

  • Graham, J.R., Kalas, P.G., Matthews, B.C.: Astrophys. J. 654, 595 (2007)

    Article  ADS  Google Scholar 

  • Greenberg, J.M., Hage, J.I.: Astrophys. J. 361, 260 (1990)

    Article  ADS  Google Scholar 

  • Hanner, M.S., Giese, R.H., Weiss, K. Zerull, R.: Astron. Astrophys. 104, 42 (1981)

    ADS  Google Scholar 

  • Iati, M.A., Giusto, A., Saija, R., Borghese, F., Denti, P., Cecchi-Pestellini, C., Aielo, S.: Astrophys. J. 615, 286 (2004)

    Article  ADS  Google Scholar 

  • Kimura, H., Kolokolova, L., Mann, I.: Astron. Astrophys. 449, 1243 (2006)

    Article  ADS  Google Scholar 

  • Kolokolova, L., Kimura, H., Mann, I.: In: Videen, G., Yatskiv, Ya., Mishchenko, M. (eds.) Photopolarimetry in Remote Sensing, pp. 431–454. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  • Lasue, J., Levasseur-Regourd, A.C.: J. Quant. Spectrosc. Radiat. Transf. 100, 220 (2006)

    Article  ADS  Google Scholar 

  • Mackowski, D.W., Mishchenko, M.I.: J. Opt. Soc. Am. A 13, 2266 (1996)

    Article  ADS  Google Scholar 

  • Mackowski, D.W., Mishchenko, M.I.: A multiple sphere T-matrix FORTRAN code for use on parallel computer clusters, Version 3.0 (2013)

  • Mathis, J.S., Whiffen, G.: Astrophys. J. 341, 808 (1989)

    Article  ADS  Google Scholar 

  • Meakin, P.: J. Colloid Interface Sci. 96, 415 (1983)

    Article  ADS  Google Scholar 

  • Meakin, P.: Phys. Rev. A 29, 997 (1984)

    Article  ADS  Google Scholar 

  • Ossenkopf, V.: Astron. Astrophys. 280, 617 (1993)

    ADS  Google Scholar 

  • Petrova, E.V., Tishkovets, V.P., Jockers, K.: Sol. Syst. Res. 38, 309 (2004)

    Article  ADS  Google Scholar 

  • Rotundi, A., Sierks, H., Della Corte, V., Fulle, M., Gutierrez, P.J., Lara, L., Barbieri, C., Lamy, P.L., Rodrigo, R., et al.: Science 347, aaa3905 (2015)

    Article  Google Scholar 

  • Schulz, R., Hilchenbach, M., Langevin, Y., Kissel, J., Silen, J., Briois, C., Engrand, C., Hornung, K., Baklouti, D., et al.: Nature 518, 216 (2015)

    Article  ADS  Google Scholar 

  • Shen, Y., Draine, B.T., Johnson, E.T.: Astrophys. J. 689, 260 (2008)

    Article  ADS  Google Scholar 

  • Volten, H., Muñoz, O., Hovenier, J.W., Rietmeijer, F.J.M., Nuth, J.A., Waters, L.B.F.M., van der Zande, W.J.: Astron. Astrophys. 470, 377 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We highly acknowledge Daniel Mackowski and Michael Mishchenko, who made their Multi-sphere T-matrix code publicly available. We also acknowledge Bruce T. Draine who made BA structures publicly available in his website. We would like to thank the anonymous referee for helpful suggestions. We also acknowledge HPC centre of NIT Silchar in collaboration with C-DAC Pune for providing the computational facilities for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazarbhuiya, A.M., Das, H.S. The study of correlation among different scattering parameters in an aggregate dust model. Astrophys Space Sci 362, 161 (2017). https://doi.org/10.1007/s10509-017-3130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3130-z

Keywords

Navigation