Skip to main content
Log in

On the conservation of the Jacobi integral in the post-Newtonian circular restricted three-body problem

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the present paper, using the first-order approximation of the \(n\)-body Lagrangian (derived on the basis of the post-Newtonian gravitational theory of Einstein, Infeld, and Hoffman), we explicitly write down the equations of motion for the planar circular restricted three-body problem in the Solar system. Additionally, with some simplified assumptions, we obtain two formulas for estimating the values of the mass-distance and velocity-speed of light ratios appropriate for a given post-Newtonian approximation. We show that the formulas derived in the present study, lead to good numerical accuracy in the conservation of the Jacobi constant and almost allow for an equivalence between the Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Accordingly, the dynamics of the system is analyzed in terms of the Poincaré sections method and Lyapunov exponents, finding that for specific values of the Jacobi constant the dynamics can be either chaotic or regular. Our results suggest that the chaoticity of the post-Newtonian system is slightly increased in comparison with its Newtonian counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the Newtonian limit \(1/c^{2}\rightarrow 0\), \(J=\omega L-E\), with \(E\) the total energy and \(L\) the angular momentum.

  2. For the case \(c=1\) in Huang and Wu (2014), the Jacobi constant still has higher accuracy when \(a=1\) and the velocity at any time is smaller than \(10^{-4}\), or when the distance \(a\) takes a larger value (see Su et al. 2016 and Chen and Wu 2016).

References

  • Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014)

    Article  ADS  MATH  Google Scholar 

  • Bombardelli, C., Peláez, J.: On the stability of artificial equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 109(1), 13 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Brumberg, V.A.: Relativistic Celestial Mechanics. Nauka, Moscow (1972)

    MATH  Google Scholar 

  • Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Hilger, Bristol (1991)

    MATH  Google Scholar 

  • Celletti, A., Giorgilli, A.: On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest. Mech. Dyn. Astron. 50(1), 31 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S., Contopoulos, G.: On a post-Galilean transformation appropriate to the post-Newtonian theory of Einstein, Infeld and Hoffmann. Proc. R. Soc., Math. Phys. Eng. Sci. 298(1453), 123–141 (1967)

    Article  ADS  MATH  Google Scholar 

  • Chen, R., Wu, X.: A note on the equivalence of post-Newtonian Lagrangian and Hamiltonian formulations. Commun. Theor. Phys. 65(3), 321 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Contopoulos, G.: In: Kotsakis, P.D. (ed.) In Memoriam D. Eginitis. Athens (1976)

    Google Scholar 

  • Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Damour, T., Jaranowski, P., Schäfer, G.: Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries. Phys. Rev. D 63(4), 044021 (2001)

    Article  ADS  Google Scholar 

  • Damour, T., Jaranowski, P., Schäfer, G.: Erratum: Equivalence between the ADM-Hamiltonian and the harmonic—coordinates approaches to the third post-Newtonian dynamics of compact binaries. Phys. Rev. D 66(2), 029901 (2002)

    Article  ADS  Google Scholar 

  • de Andrade, V.C., Blanchet, L., Faye, G.: Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms. Class. Quantum Gravity 18(5), 753 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dubeibe, F.L., Bermúdez-Almanza, L.D.: Optimal conditions for the numerical calculation of the largest Lyapunov exponent for systems of ordinary differential equations. Int. J. Mod. Phys. C 25(7), 1450024 (2014)

    Article  ADS  Google Scholar 

  • Eddington, A., Clark, G.L.: The problem of n bodies in general relativity theory. Proc. R. Soc., Math. Phys. Eng. Sci. 166(927), 465–475 (1938)

    Article  ADS  MATH  Google Scholar 

  • Einstein, A., Infeld, L., Hoffmann, B.: The gravitational equations and the problem of motion. Ann. Math. 39, 65–100 (1938)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Froeschlé, C.: Numerical study of dynamical systems with three degrees of freedom. II. Numerical displays of four-dimensional sections. Astron. Astrophys. 5, 177 (1970)

    ADS  Google Scholar 

  • Gonczi, R.: The Lyapunov characteristic exponents as indicators of stochasticity in the restricted three-body problem. Celest. Mech. 25(3), 271–280 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Huang, G., Wu, X.: Dynamics of the post-Newtonian circular restricted three-body problem with compact objects. Phys. Rev. D 89(12), 124034 (2014)

    Article  ADS  Google Scholar 

  • Huang, L., Wu, X., Ma, D.: Second post-Newtonian Lagrangian dynamics of spinning compact binaries. Eur. Phys. J. C 76(9), 488 (2016)

    Article  ADS  Google Scholar 

  • Klačka, J., Kocifaj, M.: Times of inspiralling for interplanetary dust grains. Mon. Not. R. Astron. Soc. 390(4), 1491 (2008)

    ADS  Google Scholar 

  • Krefetz, E.: Restricted three-body problem in the post-Newtonian approximation. Astron. J. 72, 471 (1967)

    Article  ADS  MATH  Google Scholar 

  • Landau, L.D.: The Classical Theory of Fields, 2nd edn. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Levi, M., Steinhoff, J.: Equivalence of ADM Hamiltonian and effective field theory approaches at fourth post-Newtonian order for binary inspirals with spins. J. Cosmol. Astropart. Phys. 12, 003 (2014). arXiv:1408.5762

    Article  ADS  Google Scholar 

  • Lukes-Gerakopoulos, G.: Adjusting chaotic indicators to curved spacetimes. Phys. Rev. D 89(4), 043002 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Maindl, T.I., Dvorak, R.: On the dynamics of the relativistic restricted three-body problem. Astron. Astrophys. 290, 335–339 (1994)

    ADS  Google Scholar 

  • Marchal, C.: The Three-Body Problem, 4th edn. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  • Motter, A.E., Saa, A.: Relativistic invariance of Lyapunov exponents in bounded and unbounded systems. Phys. Rev. Lett. 102(18), 184101 (2009)

    Article  ADS  Google Scholar 

  • Musielak, Z.E., Quarles, B.: The three-body problem. Rep. Prog. Phys. 77(6), 065901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Salazar, F.J.T., de Melo, C.F., Macau, E.E.N., Winter, O.C.: Three-body problem, its Lagrangian points and how to exploit them using an alternative transfer to L4 and L5. Celest. Mech. Dyn. Astron. 114(1–2), 201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Su, X.N., Wu, X., Liu, F.Y.: Application of the logarithmic Hamiltonian algorithm to the circular restricted three-body problem with some post-Newtonian terms. Astrophys. Space Sci. 361, 32 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Tancredi, G., Sánchez, A., Roig, F.: A comparison between methods to compute Lyapunov exponents. Astron. J. 121(2), 1171 (2001)

    Article  ADS  Google Scholar 

  • Wang, H., Huang, G.Q.: The effect of spin-orbit coupling and spin-spin coupling of compact binaries on chaos. Commun. Theor. Phys. 64(2), 159 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wu, X., Huang, T.: Computation of Lyapunov exponents in general relativity. Phys. Lett. A 313(1), 77–81 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wu, X., Huang, G.: Ruling out chaos in comparable mass compact binary systems with one body spinning. Mon. Not. R. Astron. Soc. 452, 3617 (2015)

    ADS  Google Scholar 

  • Wu, X., Huang, T., Zhang, H.: Lyapunov indices with two nearby trajectories in a curved spacetime. Phys. Rev. D 74(8), 083001 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Wu, X., Mei, L., Huang, G., Liu, S.: Analytical and numerical studies on differences between Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Phys. Rev. D 91, 024042 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for constructive criticisms and suggestions that helped us improve this paper. FLD acknowledges financial support from Universidad de los Llanos, under Grants Commission: Postdoctoral Fellowship Scheme. FDLC and GAG gratefully acknowledges the financial support provided by VIE-UIS, under grants numbers 1822, 1785 and 1838, and COLCIENCIAS, Colombia, under Grant No. 8840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Dubeibe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubeibe, F.L., Lora-Clavijo, F.D. & González, G.A. On the conservation of the Jacobi integral in the post-Newtonian circular restricted three-body problem. Astrophys Space Sci 362, 97 (2017). https://doi.org/10.1007/s10509-017-3076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3076-1

Keywords

Navigation