Skip to main content
Log in

Nonlinear waves in bipolar complex viscous astroclouds

  • Original Paper
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A theoretical evolutionary model to analyze the dynamics of strongly nonlinear waves in inhomogeneous complex astrophysical viscous clouds on the gravito-electrostatic scales of space and time is procedurally set up. It compositionally consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neutral hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method reduces the inter-coupled structure equations into a pair of intermixed forced Korteweg-de Vries-Burgers (\(f\)-KdVB) equations. The force-terms are self-consistently sourced by inhomogeneous gravito-electrostatic interplay. A numerical illustrative shape-analysis based on judicious astronomical parametric platform shows the electrostatic waves evolving as compressive dispersive shock-like eigen-modes. A unique transition from quasi-monotonic to non-monotonic oscillatory compressive shock-like patterns is found to exist. In contrast, the self-gravitational and effective perturbations grow purely as non-monotonic compressive oscillatory shock-like structures with no such transitory features. It is seen that the referral frame velocity acts as amplitude-reducing agent (stabilizing source) for the electrostatic fluctuations solely. A comparison in the prognostic light of various earlier satellite-based observations and in-situ measurements is presented. The paper ends up with synoptic highlights on the main implications and non-trivial applications in the interstellar space and cosmic plasma environments leading to bounded structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

Authors are thankful to the anonymous learned reviewers for insightful comments and constructive suggestions leading to improvements into the current form of the manuscript. The financial support from the Department of Science and Technology (DST) of New Delhi, Government of India, extended to the authors through the SERB Fast Track Project (Grant No. SR/FTP/PS-021/2011) is thankfully recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Karmakar.

Appendices

Appendix A: Coefficients of the electrostatic \(f\)-KdVB equation

The involved coefficients in the electrostatic \(f\)-KdVB equation (Eq. (23)) are defined as follows

$$\begin{aligned} A_{1}& = \bigl[ ( n_{e0} - n_{i0} ) + \bigl\{ 4 ( 3\alpha_{2} )^{1 / 2}Z_{ -}^{3}n_{ - 0} \bigr\} \mu^{ - 5} \\ &\quad{} - \bigl\{ 4 \bigl( 3\alpha_{1} \delta_{ -, +}^{5} \bigr)^{1 / 2}Z_{ +}^{3}n_{ + 0} \bigr\} \mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ ( n_{e0} + n_{i0} ) + Z_{ -}^{2}n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6\alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + Z_{ +}^{2}n_{ + 0} ( 3 \alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{1} )^{ - 1}\mu^{ - 1} + \frac{3}{2} \delta_{ -, +} \mu^{ - 3} + 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \\ A_{2} &= \biggl[ \frac{1}{2} \bigl( Z_{ -}^{2}n_{ - 0} \kappa_{ -} \bigr)\mu^{ - 3} \bigl\{ 2 - 3\alpha_{2} \mu^{ - 2} \bigr\} \\ &\quad{} - \frac{1}{2} \bigl( Z_{ +}^{2}n_{0 +} \kappa_{ +} \bigr)\mu^{ - 3} \\ &\quad{}\times \bigl\{ - 2 - 6 \alpha_{1}\delta_{ -, +}^{2}\mu^{ - 2} + 9 \alpha_{1}\delta_{ -, +} \mu^{ - 2} \bigr\} \biggr] \\ &\quad{}\times \biggl[ ( n_{e0} + n_{i0} ) + Z_{ -}^{2}n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6 \alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + Z_{ +}^{2}n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{1} )^{ - 1}\mu^{ - 1} + \frac{3}{2} \delta_{ -, +} \mu^{ - 3} + 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \\ A_{3}& = - ( \rho_{0}Gm_{ -} ) e^{ - 2} \biggl[ ( n_{e0} + n_{i0} ) + Z_{ -}^{2}n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6 \alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + Z_{ +}^{2}n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{1} )^{ - 1}\mu^{ - 1} - \frac{3}{2} \delta_{ -, +} \mu^{ - 3} - 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \\ A_{4} &= \biggl[ Z_{ -} n_{ - 0} ( 3 \alpha_{2} )^{1 / 2} \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6 \alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + Z_{ +} n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{1}\delta_{ -, +} )^{ - 1} \mu^{ - 1} + \frac{3}{2}\mu^{ - 3} - 6\alpha_{1} \delta_{ -, +} \mu^{ - 5} \biggr\} \biggr] \\ &\quad{}\times \biggl[ ( n_{e0} + n_{i0} ) + Z_{ -}^{2}n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6 \alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + Z_{ +}^{2}n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{1} )^{ - 1}\mu^{ - 1} + \frac{3}{2} \delta_{ -, +} \mu^{ - 3} + 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \\ A_{5}& = \bigl[ 4 ( 3\alpha_{2} )^{1 / 2}Z_{ -}^{2} n_{ - 0} \mu^{ - 5} + 4 \bigl( 3\alpha_{1} \delta_{ -, +}^{3} \bigr)^{1 / 2}Z_{ +}^{2} n_{ + 0}\mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ ( n_{e0} + n_{i0} ) + ( 3\alpha_{2} )^{1 / 2}Z_{ -}^{2}n_{ - 0} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6\alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2}Z_{ +}^{2}n_{ + 0} \\ &\quad{}\times \biggl\{ ( 3\alpha_{1} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\delta_{ -, +} \mu^{ - 3} + 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \\ A_{6} &= \bigl[ 4 ( 3\alpha_{2} )^{1 / 2}Z_{ -}^{2} n_{ - 0}\mu^{ - 5} + 4 \bigl( 3\alpha_{1} \delta_{ -, +}^{3} \bigr)^{1 / 2}Z_{ +}^{2} n_{ + 0}\mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ ( n_{e0} + n_{i0} ) + Z_{ -}^{2}n_{ - 0} ( 3 \alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6 \alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + ( 3\alpha_{1} \delta_{ -, +} )^{1 / 2}Z_{ +}^{2}n_{ + 0} \\ &\quad{}\times \biggl\{ ( 3\alpha_{1} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\delta_{ -, +} \mu^{ - 3} + 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \\ A_{7} &= \bigl[ - 4 ( 3\alpha_{2} )^{1 / 2}Z_{ -} n_{ - 0}\mu^{ - 5} + 4 ( 3\alpha_{1} \delta_{ -, +} )^{1 / 2}Z_{ +} n_{ + 0} \mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ ( n_{e0} + n_{i0} ) + ( 3 \alpha_{2} )^{1 / 2}Z_{ -}^{2}n_{ - 0} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + 6\alpha_{2} \mu^{ - 5} \biggr\} \\ &\quad{} + ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2}Z_{ +}^{2}n_{ + 0} \\ &\quad{}\times \biggl\{ ( 3\alpha_{1} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\delta_{ -, +} \mu^{ - 3} + 6\alpha_{1} \delta_{ -, +}^{2}\mu^{ - 5} \biggr\} \biggr]^{ - 1}, \end{aligned}$$

and

$$\begin{aligned} F_{E} ( \varPhi,\varPsi ) = A_{4}\frac{\partial \varPsi}{\partial \xi} + A_{5}\varPhi \frac{\partial \varPsi}{\partial \xi} + A_{6}\varPsi \frac{\partial \varPhi}{\partial \xi} + A_{7}\varPsi \frac{\partial \varPsi}{\partial \xi}. \end{aligned}$$

Appendix B: Coefficients of the self-gravitational \(f\)-KdVB equation

The involved coefficients in the self-gravitational \(f\)-KdVB equation (Eq. (31)) are given as

$$\begin{aligned} B_{1} &= \bigl[ - 4m_{ +} n_{ + 0} ( 3 \alpha_{1}\delta_{ -, +} )^{1 / 2}\mu^{ - 5} + 4m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \mu^{ - 5} \\ &\quad{} + 4m_{n}n_{n0} ( 3\alpha_{3} \delta_{ -,n} )^{1 / 2}\mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ m_{ +} n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3\alpha_{1}\delta_{ -, +} )^{ - 1}\mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6 \alpha_{1}\delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2} \mu^{ - 3} + ( 6\alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3}\delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{3}\delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6 \alpha_{3}\delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \\ B_{2} &= \biggl[ \frac{1}{2} ( m_{ +} n_{ + 0}\kappa_{ +} )\mu^{ - 3} \bigl\{ - 2 - 21 ( \alpha_{1}\delta_{ -, +} )\mu^{ - 2} \bigr\} \\ &\quad{} + \frac{1}{2} ( m_{ -} n_{ - 0}\kappa_{ -} ) \mu^{ - 3} \bigl\{ - 2 + 3\alpha_{2}\mu^{ - 2} \bigr\} \\ &\quad{}\times \frac{1}{2} ( m_{n}n_{n0}\kappa_{n} ) \mu^{ - 3} \bigl\{ - 2 + 3 ( \alpha_{3}\delta_{ -,n} ) \mu^{ - 2} \bigr\} \biggr] \\ &\quad{}\times \biggl[ m_{ +} n_{ + 0} ( 3 \alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3 \alpha_{1}\delta_{ -, +} )^{ - 1}\mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6\alpha_{1}\delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3 \alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + ( 6 \alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3}\delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{3}\delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6\alpha_{3} \delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \\ B_{3} &= - \rho_{0} \biggl[ m_{ +} n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3\alpha_{1}\delta_{ -, +} )^{ - 1} \mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6\alpha_{1} \delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2} \mu^{ - 3} + ( 6\alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3} \delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{3} \delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6\alpha_{3} \delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \\ B_{4} &= \biggl[ m_{ +} n_{ + 0} ( 3 \alpha_{1}\delta_{ -, +} )^{1 / 2}Z_{ +} \\ &\quad{}\times \biggl\{ ( 3\alpha_{1} )^{ - 1}\mu^{ - 1} - \frac{5}{2} \delta_{ -, +} \mu^{ - 3} - 6 \bigl( \alpha_{1} \delta_{ -, +}^{2} \bigr)\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2}Z_{ -} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + ( 6\alpha_{2} )\mu^{ - 5} \biggr\} \biggr] \\ &\quad{}\times \biggl[ m_{ +} n_{ + 0} ( 3 \alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3 \alpha_{1}\delta_{ -, +} )^{ - 1}\mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6\alpha_{1}\delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3 \alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + ( 6 \alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3}\delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{3}\delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6 \alpha_{3}\delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \\ B_{5} &= \bigl[ 4m_{ +} n_{ + 0} \bigl( 3 \alpha_{1}\delta_{ -, +}^{5} \bigr)^{1 / 2}Z_{ +}^{2} \mu^{ - 5} \\ &\quad{} - 4m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2}Z_{ -}^{2}\mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ m_{ +} n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3\alpha_{1}\delta_{ -, +} )^{ - 1}\mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6 \alpha_{1}\delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2} \mu^{ - 3} + ( 6\alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3}\delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{3}\delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6 \alpha_{3}\delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \\ B_{6} &= \bigl[ 4m_{ +} n_{ + 0} \bigl( 3 \alpha_{1}\delta_{ -, +}^{3} \bigr)^{1 / 2}Z_{ +} \mu^{ - 5} \\ &\quad{} + 4m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2}Z_{ -} \mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ m_{ +} n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3\alpha_{1}\delta_{ -, +} )^{ - 1} \mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6\alpha_{1} \delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2} \mu^{ - 3} + ( 6\alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3}\delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{3}\delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6 \alpha_{3}\delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \\ B_{7} &= \bigl[ 4m_{ +} n_{ + 0} \bigl( 3 \alpha_{1}\delta_{ -, +}^{3} \bigr)^{1 / 2}Z_{ +} \mu^{ - 5} \\ &\quad{} + 4m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2}Z_{ -} \mu^{ - 5} \bigr] \\ &\quad{}\times \biggl[ m_{ +} n_{ + 0} ( 3\alpha_{1}\delta_{ -, +} )^{1 / 2} \\ &\quad{}\times \biggl\{ - ( 3\alpha_{1}\delta_{ -, +} )^{ - 1} \mu^{ - 1} + \frac{5}{2}\mu^{ - 3} + ( 6\alpha_{1} \delta_{ -, +} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{ -} n_{ - 0} ( 3\alpha_{2} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3 \alpha_{2} )^{1 / 2}\mu^{ - 1} + \frac{3}{2} \mu^{ - 3} + ( 6\alpha_{2} )\mu^{ - 5} \biggr\} \\ &\quad{} - m_{n}n_{n0} ( 3\alpha_{3}\delta_{ -,n} )^{1 / 2} \\ &\quad{}\times \biggl\{ ( 3\alpha_{3}\delta_{ -,n} )^{ - 1}\mu^{ - 1} + \frac{3}{2}\mu^{ - 3} + \bigl( 6 \alpha_{3}\delta_{ -,n}\mu^{ - 5} \bigr) \biggr\} \biggr]^{ - 1}, \end{aligned}$$

and

$$\begin{aligned} F_{G} ( \varPhi, \varPsi ) = B_{4}\frac{\partial \varPhi}{\partial \xi} + B_{5}\varPhi \frac{\partial \varPhi}{\partial \xi} + B_{6}\varPsi \frac{\partial \varPhi}{\partial \xi} + B_{7}\varPhi \frac{\partial \varPsi}{\partial \xi}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, P.K., Haloi, A. Nonlinear waves in bipolar complex viscous astroclouds. Astrophys Space Sci 362, 94 (2017). https://doi.org/10.1007/s10509-017-3067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3067-2

Keywords

Navigation