Skip to main content
Log in

Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by Interplanetary Coronal Mass Ejections

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The relationship of Forbush decreases (FDs) observed in Moscow neutron monitor with the interplanetary magnetic field (B) and solar wind speed (Vsw) is investigated in detail for the FDs associated with Interplanetary Coronal Mass Ejections (ICMEs) during 2001–2004. The classical two-step FD events are selected, and characteristics of the first step (mainly associated with shock), as well as of complete decrease (main phase) and recovery phase, are studied here. It is observed that the onset of FD occurs generally after zero to a few hours of shock arrival, indicating in the post-shock region that mainly sheath and ICME act as important drivers of FD. A good correlation is observed between the amplitude of B and associated FD magnitude observed in the neutron count rate of the main phase. The duration of the main phase observed in the neutron count rate also shows good correlation with B. This might indicate that stronger interplanetary disturbances have a large dimension of magnetic field structure which causes longer fall time of FD main phase when they transit across the Earth. It is observed that Vsw and neutron count rate time profiles show considerable similarity with each other during complete FD, especially during the recovery phase of FD. Linear relationship is observed between time duration/e-folding time of FD recovery phase and Vsw. These observations indicate that the FDs are influenced by the inhibited diffusion of cosmic rays due to the enhanced convection associated with the interplanetary disturbances. We infer that the inhibited cross-field diffusion of the cosmic rays due to enhanced B is mainly responsible for the main phase of FD whereas the expansion of ICME contributes in the early recovery phase and the gradual variation of Vsw beyond ICME boundaries contributes to the long duration of FD recovery through reduced convection–diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alania, M., Wawrzynczak, A.: Astrophys. Space Sci. Trans. 4(2), 59 (2008)

    Article  ADS  Google Scholar 

  • Alfvén, H.: Tellus 10(1), 104 (1958)

    Article  ADS  Google Scholar 

  • Arunbabu, K., Antia, H., Dugad, S., Gupta, S., Hayashi, Y., Kawakami, S., Mohanty, P., Nonaka, T., Oshima, A., Subramanian, P.: Astron. Astrophys. 555, 139 (2013)

    Article  ADS  Google Scholar 

  • Arunbabu, K., Antia, H., Dugad, S., Gupta, S., Hayashi, Y., Kawakami, S., Mohanty, P., Oshima, A., Subramanian, P.: Astron. Astrophys. 580, A41 (2015)

    Article  ADS  Google Scholar 

  • Badruddin: Sol. Phys. 209(1), 195 (2002a)

    Article  ADS  Google Scholar 

  • Badruddin: Astrophys. Space Sci. 281(3), 651 (2002b)

    Article  ADS  Google Scholar 

  • Barnden, L.: In: International Cosmic Ray Conference, vol. 2, p. 1271 (1973a)

    Google Scholar 

  • Barnden, L.: In: International Cosmic Ray Conference, vol. 2, p. 1277 (1973b)

    Google Scholar 

  • Belov, A.: Proc. Int. Astron. Union 4(S257), 439 (2008)

    Article  Google Scholar 

  • Belov, A., Eroshenko, E., Oleneva, V., Struminsky, A., Yanke, V.: Adv. Space Res. 27(3), 625 (2001)

    Article  ADS  Google Scholar 

  • Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: Sol. Phys. 289(10), 3949 (2014)

    Article  ADS  Google Scholar 

  • Bevington, P.R., Robinson, D.K.: Data Reduction and Error Analysis for the Physical Sciences, 2nd edn., vol. 7, p. 324 (1992). doi:10.1063/1.4823194.

    Google Scholar 

  • Burlaga, L., McDonald, F., Goldstein, M., Lazarus, A.: J. Geophys. Res. Space Phys. 90(A12), 12027 (1985)

    Article  ADS  Google Scholar 

  • Candia, J., Roulet, E.: J. Cosmol. Astropart. Phys. 2004(10), 007 (2004)

    Article  Google Scholar 

  • Cane, H.V.: Space Sci. Rev. 93(1–2), 55 (2000)

    Article  ADS  Google Scholar 

  • Chih, P.P., Lee, M.A.: J. Geophys. Res. Space Phys. 91(A3), 2903 (1986)

    Article  ADS  Google Scholar 

  • Cohen, J., Cohen, P., West, S.G., Aiken, L.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, third edition, p. 703 (2003). doi:10.2307/2064799.

    Google Scholar 

  • Dorman, L.I.: Cosmic ray variations. Technical report, DTIC document (1957)

  • Dumbovic, M., Vrsnak, B., Calogovic, J., Karlica, M.: Astron. Astrophys. 531, 91 (2011)

    Article  ADS  Google Scholar 

  • Dumbovic, M., Vrsnak, B., Čalogovic, J., Zupan, R.: Astron. Astrophys. 538, 28 (2012)

    Article  ADS  Google Scholar 

  • Dunn, O.J., Clark, V.: J. Am. Stat. Assoc. 64(325), 366 (1969)

    Article  Google Scholar 

  • Forbush, S.: Phys. Rev. 51, 1108 (1937)

    Article  ADS  Google Scholar 

  • Ifedili, S.: Earth Planets Space 53(10), 993 (2001)

    Article  ADS  Google Scholar 

  • Ihongo, G., Wang, C.-T.: Astrophys. Space Sci. 361(1), 1 (2016)

    Article  Google Scholar 

  • Jackson, K.: IEEE Trans. Biomed. Eng. 2, 122 (1979)

    Article  Google Scholar 

  • Jämsen, T., Usoskin, I.G., Räihä, T., Sarkamo, J., Kovaltsov, G.: Adv. Space Res. 40(3), 342 (2007)

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C., Luhmann, J., Skoug, R.: Sol. Phys. 239(1–2), 393 (2006)

    Article  ADS  Google Scholar 

  • Jordan, A., Spence, H.E., Blake, J., Shaul, D.: J. Geophys. Res. Space Phys. 116(A11), 16 (2011)

    Article  Google Scholar 

  • Kadokura, A., Nishida, A.: J. Geophys. Res. Space Phys. 91(A1), 13 (1986)

    Article  ADS  Google Scholar 

  • Laster, H., Lenchek, A., Singer, S.: J. Geophys. Res. 67(7), 2639 (1962)

    Article  ADS  Google Scholar 

  • Le Roux, J., Potgieter, M.: Astron. Astrophys. 243, 531 (1991)

    ADS  Google Scholar 

  • Lockwood, J., Webber, W., Jokipii, J.: J. Geophys. Res. Space Phys. 91(A3), 2851 (1986)

    Article  ADS  Google Scholar 

  • Morrison, P.: Phys. Rev. 101(4), 1397 (1956)

    Article  ADS  Google Scholar 

  • Nishida, A.: J. Geophys. Res. Space Phys. 88(A2), 785 (1983)

    Article  ADS  Google Scholar 

  • Oh, S.Y., Yi, Y., Kim, Y.H.: J. Geophys. Res. Space Phys. 113(A1), 13 (2008)

    Article  Google Scholar 

  • Parker, E.N.: Planet. Space Sci. 13(1), 9 (1965)

    Article  ADS  Google Scholar 

  • Penna, R.F., Quillen, A.C.: J. Geophys. Res. Space Phys. 110(A9), A09S05 (2005)

    Article  ADS  Google Scholar 

  • Perko, J.S.: J. Geophys. Res. Space Phys. 92(A8), 8502 (1987)

    Article  ADS  Google Scholar 

  • Raghav, A., Bhaskar, A., Lotekar, A., Vichare, G., Yadav, V.: J. Cosmol. Astropart. Phys. 2014(10), 074 (2014)

    Article  Google Scholar 

  • Richardson, I., Cane, H.: Sol. Phys. 264(1), 189 (2010)

    Article  ADS  Google Scholar 

  • Richardson, I., Cane, H.: Sol. Phys. 270(2), 609 (2011)

    Article  ADS  Google Scholar 

  • Richardson, I., Wibberenz, G., Cane, H.: J. Geophys. Res. Space Phys. 101(A6), 13483 (1996)

    Article  ADS  Google Scholar 

  • Russell, C., Shinde, A.: Sol. Phys. 216(1–2), 285 (2003)

    Article  ADS  Google Scholar 

  • Smillie, K.W.: Introduction to regression and correlation, 30 (1966)

  • Subramanian, P., Antia, H., Dugad, S., Goswami, U., Gupta, S., Hayashi, Y., Ito, N., Kawakami, S., Kojima, H., Mohanty, P., et al.: Astron. Astrophys. 494(3), 1107 (2009)

    Article  ADS  Google Scholar 

  • Thomas, B.T., Gall, R.: J. Geophys. Res. Space Phys. 89(A5), 2991 (1984)

    Article  ADS  Google Scholar 

  • Usoskin, I., Braun, I., Gladysheva, O., Hörandel, J., Jämsén, T., Kovaltsov, G., Starodubtsev, S.: J. Geophys. Res. Space Phys. 113(A7) (2008)

  • Van Allen, J.A., Fillius, R.W.: Geophys. Res. Lett. 19(14), 1423 (1992)

    Article  ADS  Google Scholar 

  • Wawrzynczak, A., Alania, M.V.: Adv. Space Res. 45(5), 622 (2010)

    Article  ADS  Google Scholar 

  • Wibberenz, G., Cane, H., Richardson, I.: In: International Cosmic Ray Conference, vol. 1, p. 397 (1997)

    Google Scholar 

  • Wibberenz, G., Le Roux, J., Potgieter, M., Bieber, J.: In: Cosmic Rays in the Heliosphere, p. 309. Springer, Berlin (1998)

    Chapter  Google Scholar 

  • Yadav, R., Yadav, N., et al.: Sol. Phys. 105(2), 413 (1986)

    ADS  Google Scholar 

  • Zhang, G., Burlaga, L.: J. Geophys. Res. Space Phys. 93(A4), 2511 (1988)

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I., Webb, D., Gopalswamy, N., Huttunen, E., Kasper, J., Nitta, N., Poomvises, W., Thompson, B., Wu, C.-C., et al.: Journal of Geophysical Research: Space Physics 112(A10) (2007), A10102

Download references

Acknowledgements

The solar wind parameters, interplanetary magnetic field and geomagnetic indices used in this paper are obtained from CDAWEB. We thank ACE science center, IZMIRAN neutron monitor, and GRAPES-3 team for providing data. We extend our sincere thanks to Prasad Subramanian, IISER, Pune, India for valuable time and discussion. We thank the anonymous reviewer for giving valuable comments and time which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush Bhaskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, A., Vichare, G., Arunbabu, K.P. et al. Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by Interplanetary Coronal Mass Ejections. Astrophys Space Sci 361, 242 (2016). https://doi.org/10.1007/s10509-016-2827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2827-8

Keywords

Navigation