Skip to main content
Log in

Thorium distribution on the lunar surface observed by Chang’E-2 gamma-ray spectrometer

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The thorium distribution on the lunar surface is critical for understanding the lunar evolution. This work reports a global map of the thorium distribution on the lunar surface observed by Chang’E-2 gamma-ray spectrometer (GRS). Our work exhibits an interesting symmetrical structure of thorium distribution along the two sides of the belt of Th hot spots. Some potential positions of KREEP volcanism are suggested, which are the Fra Mauro region, Montes Carpatus, Aristarchus Plateau and the adjacent regions of Copernicus Crater. Based on the lunar map of thorium distribution, we draw some conclusions on two critical links of lunar evolution: (1) the thorium abundance within the lunar crust and mantle, in the last stage of Lunar Magma Ocean (LMO) crystallization, may have a positive correlation with the depth in the crust, reaches a peak when coming through the transitional zone between the crust and mantle, and decreases sharply toward the inside of the mantle; thus, the Th-enhanced materials originated from the lower crust and the layer between the crust and mantle, (2) in PKT, KREEP volcanism might be the primary mechanism of Th-elevated components to the lunar surface, whereas the Imbrium impact acted as a relatively minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Borg, L.E., Shearer, C.K., Asmeron, Y., Papike, J.J.: Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432, 209–211 (2004)

    Article  ADS  Google Scholar 

  • Chenet, H., Lognonné, P., Wiezorek, M.A., Mizutani, H.: A first crustal thickness map of the Moon with Apollo seismic data. In: 35th Proceedings of Lunar and Planetary Science, Lunar and Planetary Institution, Houston (2004). Conference Abstract, 1581

    Google Scholar 

  • Du, J.S., Chen, C., Liang, Q., Zhou, C.: The characteristics of rock-density distributions on the surface and in the crust of the Moon. Chin. J. Geophys. 53, 2,059–2,067 (2010)

    Google Scholar 

  • Elphic, R.C., Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Maurice, S., Binder, A.B., Lucey, P.G.: Lunar rare Earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. J. Geophys. Res., Planets 105(E8), 20,333–20,245 (2000)

    Article  ADS  Google Scholar 

  • Feldman, W.C., Barraclough, B.L., Fuller, K.R.: The Lunar Prospector gamma-ray and neutron spectrometers. Nucl. Instrum. Methods Phys. Res., Sect. A 422, 562–566 (1999). doi:10.1016/S0168-9002(98)00934-6

    Article  ADS  Google Scholar 

  • Fernandes, V.A., Burgess, R., Turner, G.: 40Ar–39Ar chronology of lunar meteorites Northwest Africa 032 and 773. Meteorit. Planet. Sci. 38(4), 555–564 (2003)

    Article  ADS  Google Scholar 

  • Gillis, J.J., Jolliff, B.L.: Lateral and vertical heterogeneity of thorium in the Procellarum KREEP terrane: as reflected in the ejecta deposits of post-Imbrium craters. In: Workshop on New Views of the Moon II. LPI Contribution, vol. 980, pp. 18–19. Lunar and Planetary Institution, Houston (1999)

    Google Scholar 

  • Gillis, J.J., Jolliff, B.L., Korotev, R.L.: Lunar surface geochemistry: global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochim. Cosmochim. Acta 68, 3,791–3,805 (2004)

    Article  Google Scholar 

  • Hagerty, J.J., Lawrence, D.J., Hawke, B.R.: Thorium abundances of basalt ponds in South Pole-Aitken basin: insights into the composition and evolution of the far side lunar mantle. J. Geophys. Res. 116, E06011 (2011)

    Article  ADS  Google Scholar 

  • Harrington, T.M., Marshall, J.H., Arnold, J.R., Peterson, L.E., Trombka, J.I., Metzger, A.E.: The Apollo gamma-ray spectrometer. Nucl. Instrum. Methods 118, 401–411 (1974). doi:10.1016/0029-554X(74)90644-2

    Article  ADS  Google Scholar 

  • Hasebe, N., Shibamura, E., Miyachi, T., Takashima, T., Kobayashi, M., Okudaira, O., Yamashita, N., Kobayashi, S., Ishizaki, T., Sakurai, K.: Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE. Earth Planets Space 60, 299–312 (2008)

    Article  ADS  Google Scholar 

  • Haskin, L.A., Warren, P.: Lunar chemistry. In: Heiken, G.H., Vaniman, D.T., French, B.M. (eds.) Lunar Sourcebook, pp. 357–474. Cambridge Univ. Press, New York (1991)

    Google Scholar 

  • Haskin, L.A., Gillis, J.J., Korotev, R.L., Jolliff, B.L.: The materials of the lunar Procellarum KREEP Terrane: a synthesis of data from geomorphological mapping, remote sensing and sample analyses. J. Geophys. Res. 105, 20,403–20,415 (2000)

    Article  ADS  Google Scholar 

  • Haskin, L.A., Korotev, R.L., Gillis, J.J., Jolliff, B.L.: Stratigraphies of Apollo and Luna highland landing sites and provenances of materials from the perspective of basin impact ejecta modeling. Lunar Planet. Sci. XXXIII, 1364 (2002)

    ADS  Google Scholar 

  • Hawke, B.R., Head, J.W.: Lunar KREEP volcanism: geologic evidence for history and mode of emplacement. In: 9th Proceedings of Lunar and Planetary Science, pp. 3285–3309. Lunar and Planetary Institution, Houston (1978). Conference Abstract

    Google Scholar 

  • Herbert, F.: Geophysical and geochemical evolution of the lunar magma ocean. In: 9th Proceedings of Lunar and Planetary Science, pp. 249–262. Lunar and Planetary Institution, Houston (1978). Conference Abstract 9

    Google Scholar 

  • Hiesinger, H., Head, J.W. III: New views of lunar geosciences: an introduction and overview. Rev. Mineral. Geochem. 60, 1–81 (2006)

    Article  Google Scholar 

  • Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., Wieczorek, M.A.: Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. 105(E2), 4,197–4,216 (2000)

    Article  ADS  Google Scholar 

  • Kobayashi, S., Karouji, Y., Morota, T., Takeda, H., Hasebe, N., Hareyama, M., Kobayashi, M., Shibamura, E., Yamashita, N., d’Uston, C., et al.: Lunar farside Th distribution measured by Kaguya gamma-ray spectrometer. Earth Planet. Sci. Lett. 337–338, 10–16 (2012)

    Article  Google Scholar 

  • Korotev, R.L.: Concentrations of radioactive elements in lunar materials. J. Geophys. Res. 103(E1), 1691–1701 (1998)

    Article  ADS  Google Scholar 

  • Korotev, R.L., Jolliff, B.J., Zeigler, R.A.: The KREEP components of the Apollo 12 regolith. Lunar Planet. Sci. Conf. 31, 1363 (2000)

    ADS  Google Scholar 

  • Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A.B., Elphic, R.C., Maurice, S., Miller, M.C., Prettyman, T.H.: High resolution measurements of absolute thorium abundances on the lunar surface. Geophys. Res. Lett. 26, 2,681–2,684 (1999)

    Article  Google Scholar 

  • Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A.B., Elphic, R.C., Maurice, S., Miller, M.C., Prettyman, T.H.: Thorium abundances on the lunar surface. J. Geophys. Res. 105(E8), 20,307–20,331 (2000)

    Article  ADS  Google Scholar 

  • Lawrence, D.J., Maurice, S., Feldman, W.C.: Gamma-ray measurements from Lunar Prospector: time series data reduction for the Gamma-Ray Spectrometer. J. Geophys. Res. 109, E07S05 (2004)

    Article  ADS  Google Scholar 

  • Li, Y., Liu, Y., Ouyang, Z., Li, C., Zhou, Y.: Petrologic distributions on the moon: based on the Lunar Prospector (LP) gamma-ray spectrometer data transformation. Acta Petrol. Sin. 23(5), 1169–1174 (2007)

    Google Scholar 

  • Ma, T., Chang, J., Zhang, N., Jian, W., Cai, M.S., Gong, Y.Z., Tang, H.S., Zhang, R.J., Wang, N.S., Yu, M., et al.: Gamma-ray spectrometer onboard Chang’E-2. Nucl. Instrum. Methods Phys. Res., Sect. A 726, 113–115 (2013)

    Article  ADS  Google Scholar 

  • McCallum, I.S., Schwartz, J.M.: Lunar Mg suite: thermobarometry and petrogenesis of parental magmas. J. Geophys. Res. 106, 27,969–27,983 (2001)

    Article  ADS  Google Scholar 

  • McCallum, I.S., Domeneghetti, M.C., Schwartz, J.M., Mullen, E.K., Zema, M., Camara, F., McCammon, C.A., Ganguly, J.: Cooling history of lunar Mg-suite gabbronorite 76255, troctolite 76535 and Stillwater pyroxenite SC-936: the record in exsolution and ordering in pyroxenes. Geochim. Cosmochim. Acta 70(24), 6068–6078 (2006)

    Article  ADS  Google Scholar 

  • Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., Vaughan, J.P., Meryer, C.: SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim. Cosmochim. Acta 72, 668–689 (2008)

    Article  ADS  Google Scholar 

  • Nyquist, L.E., Shih, C.-Y.: The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2,213–2,234 (1992)

    Article  Google Scholar 

  • Oberbeck, V.R.: The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys. 13, 337–362 (1975)

    Article  ADS  Google Scholar 

  • Prettyman, T.H., Hagerty, J.J., Elphic, R.C., Feldman, W.C., Lawrence, D.J., McKinney, G.W., Vaniman, D.T.: Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. 111, E12007 (2006)

    Article  ADS  Google Scholar 

  • Prissel, T.C., Parman, S.W., Jackson, C.R.M., Rutherford, M.J., Hess, P.C., Head, J.W., Cheek, L., Dhingra, D., Pieters, C.M.: Pink Moon: the petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism. Earth Planet. Sci. Lett. 403, 144–156 (2014)

    Article  ADS  Google Scholar 

  • Reedy, R.C.: Planetary gamma-ray spectroscopy. In: 9th Proceedings of Lunar and Planetary Science, LPI Contribution No. 1575, pp. 2,961–2,984. Lunar and Planetary Institution, Houston (1978). Conference Abstract

    Google Scholar 

  • Reedy, R.C., Arnold, J.R., Trombka, J.I.: Expected gamma ray emission spectra from the lunar surface as a function of chemical composition. J. Geophys. Res. 78, 5,847–5,866 (1973)

    Article  ADS  Google Scholar 

  • Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Brog, L.E., Longhi, J., Elkins-Tanton, L.T., Neal, C.R., Antonenko, I., et al.: Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006)

    Article  Google Scholar 

  • Shearer, C.K., Burger, P.V., Guan, Y., Papike, J.J., Sutton, S.R., Atudorei, N.V.: Origin of sulfide replacement textures in lunar breccias. Implications for vapor element transport in the lunar crust. Geochim. Cosmochim. Acta 83, 138–158 (2012)

    Article  ADS  Google Scholar 

  • Shearer, C.K., Elardo, S.M., Petro, N.E., Borg, L.E., McCubbin, F.M.: Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am. Mineral. 100, 294–325 (2015)

    Article  ADS  Google Scholar 

  • Snyder, G.A., Taylor, L.A.: Constraints on the genesis and evolution of the Moon’s magma ocean and derivative cumulate sources as supported by lunar meteorites. In: Proceedings of NIPR Symposium on Antarctic Meteorites, vol. 6, pp. 246–267 (1993)

    Google Scholar 

  • Spudis, P.D.: Composition and origin of the Apennine Bench Formation. In: 9th Proceedings of Lunar and Planetary Science, pp. 3,379–3,394. Lunar and Planetary Institution, Houston (1978). Conference Abstract

    Google Scholar 

  • Stöffler, D., Ryder, G., Ivanov, B.A., Artemieva, N.A., Cintala, M.J., Grieve, R.A.F.: Cratering history and lunar chronology. Rev. Mineral. Geochem. 60, 519–596 (2006)

    Article  Google Scholar 

  • Taylor, G.J., Martel, L.M.V., Spudis, P.D.: The Hadley-Apennine KREEP basalt igneous province. Meteorit. Planet. Sci. 47(5), 861–879 (2012)

    Article  ADS  Google Scholar 

  • Thompson, T.W., Campbell, B.A., Ghent, R.R., Hawke, B.R., Leverington, D.W.: Radar probing of planetary regoliths: an example from the northern rim of Imbrium basin. J. Geophys. Res., Planets 111, E06S14 (2006)

    Article  ADS  Google Scholar 

  • Wang, X., Pedrycz, W.: Petrologic characteristics of the lunar surface. Sci. Rep. 5, 17075 (2015)

    Article  ADS  Google Scholar 

  • Warren, P.H.: A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360–376 (1993)

    ADS  Google Scholar 

  • Warren, P.H.: Compositional structure within the lunar crust as constrained by Lunar Prospector thorium data. Geophys. Res. Lett. 28, 2,565–2,568 (2001)

    Article  Google Scholar 

  • Wieczorek, M.A., Jolliff, B.L., Khan, A., Pritchard, M.E., Weiss, B.P., Williams, J.G., Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K.: The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006)

    Article  Google Scholar 

  • Wilhelms, D.E.: The geologic history of the Moon. U. S. Geol. Survey Prof.: Paper 1348

  • Wilson, J.T., Eke, V.R., Massey, R.J., Elphic, R.C., Jolliff, B.L., Lawrence, D.J., Llewellin, E.W., McElwaine, J.N., Teodoro, L.F.A.: Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex. J. Geophys. Res., Planets 120, 92–108 (2015)

    Article  ADS  Google Scholar 

  • Wood, J.A.: Thermal history and early magmatism in the Moon. Icarus 16(2), 229–240 (1972)

    Article  ADS  Google Scholar 

  • Yamashita, N., Hasebe, N., Reedy, R.C., Kobayashi, S., Karouji, Y., Hareyama, M., Shibaura, E., Kobayashi, M.N., Okudaira, O., d’Uston, C., et al.: Uranium on the Moon: global distribution and U/Th ratio. Geophys. Res. Lett. 37, L10201 (2010)

    ADS  Google Scholar 

  • Yang, J.: Study on data processing of Chang’E-1 gamma-ray spectra. Doctoral Dissertation (2010)

  • Zhu, M., Chang, J., Ma, T., Lp, W.H., Fa, W.Z., Wu, J., Cai, M.S., Gong, Y.Z., Hu, Y.M., Xu, A.A., et al.: Potassium map from Chang’E-2 constraints the impact of Crisium and Orientale Basin on the Moon. Sci. Rep. 3, 1611 (2013)

    ADS  Google Scholar 

  • Zhu, M., Chang, J., Fa, W., Ip, W., Ma, T., Xie, M., Xu, A., Tang, Z.: Thorium on the lunar highlands surface: insights from Chang’E-2 Gamma-ray Spectrometer. In: 45th Lunar and Planetary Science Conference, 1237 (2014)

    Google Scholar 

  • Zou, Y., Zhang, L., Liu, J., Mu, L., Ren, X., Zhang, G., Chang, J., Yan, J., Zhang, N., Zhang, H., et al.: Data analysis of Chang’E-1 gamma-ray spectrometer and global distribution of U, K, and Th elemental abundances. Acta Geol. Sin. 85, 1,299–1,309 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate “The Science and Application Center for Moon and Deepspace Exploration” for providing Chang’E-2 GRS data (http://moon.bao.ac.cn/). We also appreciate the pertinent comments suggested by the reviews. These comments have contributed much to improve the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 41372341, 61372153, 61202172), Wuhan Science and Technology Project (Grant No. 2015010101010025), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG110410, CUG140410), the Key Research Program of the Chinese Academy of Sciences (KGZD-EW-603), Education Department of Hubei Province (Grant No. B2015460) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFA052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X. & Wu, K. Thorium distribution on the lunar surface observed by Chang’E-2 gamma-ray spectrometer. Astrophys Space Sci 361, 234 (2016). https://doi.org/10.1007/s10509-016-2816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2816-y

Keywords

Navigation