Skip to main content
Log in

Research on the inversion of elemental abundances from Chang’E-2 X-ray spectrometry data

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China’s Chang’E-2 (CE-2) lunar orbiter carried a set of X-ray spectrometer (XRS) to investigate the elemental abundances of the lunar surface. During CE-2’s life span around the Moon, the XRS experienced several events of solar flare. The X-ray solar monitor onboard recorded the spectra of solar X-rays at the same time. In this paper, we introduced the XRS instrument and data product. We analyzed the characteristics of the XRS data. Using the data obtained during an M solar flare event which had occurred on Feb. 16, 2011, we derived the elemental abundances of Mg, Al, Si, Ca and Fe of the lunar surface in the Oceanus Procellarum. Finally, we discussed the factors that influence the accuracy of the inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler I., Gerard J., Trombka J.I. et al. (1972) The Apollo 15 X-ray fluorescence experiment. In Proc. Lunar Sci. Conf. (3rd) [C]. pp. 2157–2178.

    Google Scholar 

  • Adler I., Trombka J.I., Schmadebeck R. et al. (1973a) Results of the Apollo 15 and 16 X-ray experiment. In Proc. Lunar Sci. Conf. (4th) [C]. pp. 2783–2801.

    Google Scholar 

  • Adler I., Trombka J.I., Lowman P. et al. (1973b) Apollo 15 and 16 results of the integrated geochemical experiment [J]. The Moon. 7, 487–504.

    Article  Google Scholar 

  • Clark P.E. and Trombka J.I. (1997) Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface [J]. Geophys. Res. 102, 16361–16384.

    Article  Google Scholar 

  • Devine J.M., McKay D.S., and Papike J.J. (1982) Lunar regolith: Petrology of the <10 μm fraction [J]. Geophys. Res. 87, 260–268.

    Article  Google Scholar 

  • Ji Ang (2003) Analysis of X-ray Fluorescence Spectroscopy[M]. Science Press, Beijing (in Chinese).

    Google Scholar 

  • Laul J.C., Papike J.J., and Simon S.B. (1982) The lunar regolith: Comparative studies of Apollo and Luna sites. Chemistry of soils from Apollo 17, Luna 16, 20 and 24. In Proc. Lunar Planet. Sci. Conf. (12th) [C]. pp. 389–407. Pergamon Press Inc., New York.

    Google Scholar 

  • Maruyama Y., Ogawa K., Okada T., and Kato M. (2008) Laboratory experiments of particle size effects on X-ray fluorescence and implications to remote X-ray Spectrometry of lunar regolith surface [J]. Earth Planets Space. 60, 293–297.

    Google Scholar 

  • McKay D.S., Heiken G., Basu A., Blandford G., Simon S., Reedy R., French B.M., and Papike J. (1991) Lunar Source Book: A User’s Guide to the Moon[M]. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  • Naranen J., Parviainen H., and Muinonen K. (2007) X-ray fluorescence modelling for Solar system regoliths: Effects of viewing geometry, particle size, and surface roughness. In Proceedings of the 236 th IAU Symposium [C]. pp. 43–250.Cambridge University Press.

    Google Scholar 

  • Naranen J., Parviainen H., Muinonen K., Carpenter J., Nygard K., and Peura M. (2008)Laboratory studies into the effect of regolith on planetary X-ray fluorescence spectroscopy [J]. Icarus. 198, 408–419.

    Article  Google Scholar 

  • Naranen J., Carpenter J., Parviainen H., Muinonen K., Fraser G., Peura M., and Kallonen A. (2009) Regolith effects in planetary X-ray fluorescence spectroscopy: laboratory studies at 1.7–6.4 keV [J]. Adv. Space Sci. 44, 313–322.

    Article  Google Scholar 

  • Narendranath S., Athiray P.S., Sreekumar P. et al. (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands [J]. Icarus. 214, 53–66.

    Article  Google Scholar 

  • Nittler L.R., Starr R.D., Lim L. et al. (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros [J]. Met. Plan. Sci. 36, 1673–1695.

    Article  Google Scholar 

  • Noble S.K. (2010) Examining the uppermost surface of the lunar regolith. In Proc. Lunar Planet. Sci. Conf. (41st) [C].pp. 1505.

    Google Scholar 

  • Okada T. and Kuwada Y. (1997) Effect of surface roughness on X-ray fluorescence emission from planetary surfaces. In Proc. Lunar Planet. Sci. Conf. (28th) [C]. pp. 1708.

    Google Scholar 

  • Okada T. (2004) Particle size effect in X-ray fluorescence at a large phase angle: Importance on elemental analysis of asteroid Eros (433). In Proc. Lunar Planet. Sci. Conf. (35th) [C]. pp. 1927.

    Google Scholar 

  • Okada T., Shiraishi H., Shirai K., Yamamoto Y., Arai T., Ogawa K., Kato M., Grande M., and the Selene XRS Team (2009) X-ray fluorescence spectrometer (XRS) on kaguya: Current status and results. In Proc. Lunar Sci. Conf. (3rd) [C]. pp. 2157–2178.

    Google Scholar 

  • Ouyang Ziyuan (2005) Introduction to Lunar Science [M]. Chinese Aerospace Press, Beijing (in Chinese).

    Google Scholar 

  • Papike J.J., Simon S.B., White C., and Laul J.C. (1982) The relationship of the lunar regolith <10 μm fraction and agglutinates. In Proc. Lunar. Planet. Sci. Conf. (12th) [C].pp. 409.

    Google Scholar 

  • Peng Wenxi (2009) Data Processing Method Investigation of CHANG’E-1 X-ray Spectrometer [D]. PhD thesis. UCAS.

    Google Scholar 

  • Prettyman T.H., Jagerty J.J., Elphic R.C., Feldman W.C., Lawrence D.J., Mckinney G.W., and Vaniman D.T. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector[J]. Geophys. Res. 111, 12007–12048.

    Article  Google Scholar 

  • Sherman J. (1955) The theoretical derivation of fluorescence X-ray intensities from mixtures [J]. Spectrochim. Acta. 7, 283–306.

    Article  Google Scholar 

  • Shirawai T. and Fujino N. (1966) Theoretical calculation of fluorescent X-ray Intensities in fluorescent X-ray spectrochemical analysis[J]. Appl. Phys. 5, 886–899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongchao Zhu or Yongliao Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, C., Zheng, Y., Zhu, Y. et al. Research on the inversion of elemental abundances from Chang’E-2 X-ray spectrometry data. Chin. J. Geochem. 33, 289–299 (2014). https://doi.org/10.1007/s11631-014-0690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-014-0690-2

Key words

Navigation