Skip to main content
Log in

Kelvin–Helmholtz instability in an active region jet observed with Hinode

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Over past ten years a variety of jet-like phenomena were detected in the solar atmosphere, including plasma ejections over a range of coronal temperatures being observed as extreme ultraviolet (EUV) and X-ray jets. We study the possibility for the development of Kelvin–Helmholtz (KH) instability of transverse magnetohydrodynamic (MHD) waves traveling along an EUV jet situated on the west side of NOAA AR 10938 and observed by three instruments on board Hinode on 2007 January 15/16 (Chifor et al. in Astron. Astrophys. 481:L57, 2008b). The jet was observed around \(\operatorname{Log} T_{\mathrm{e}} = 6.2\) with up-flow velocities exceeded \(150~\mbox{km}\,\mbox{s}^{-1}\). Using Fe xii \(\lambda186\) and \(\lambda195\) line ratios, the measured densities were found to be above \(\operatorname{Log} N_{\mathrm{e}} = 11\). We have modeled that EUV jet as a vertically moving magnetic flux tube (untwisted and weakly twisted) and have studied the propagation characteristics of the kink (\(m = 1\)) mode and the higher \(m\) modes with azimuthal mode numbers \(m = 2, 3, 4\). It turns out that all these MHD waves can become unstable at flow velocities in the range of \(112\mbox{--}114.8~\mbox{km}\,\mbox{s}^{-1}\). The lowest critical jet velocity of \(112~\mbox{km}\,\mbox{s}^{-1}\) is obtained when modeling the jet as compressible plasma contained in an untwisted magnetic flux tube. When the jet and its environments are treated as incompressible media, the critical jet velocity becomes higher, namely \(114.8~\mbox{km}\,\mbox{s}^{-1}\). A weak twist of the equilibrium magnetic field in the same approximation of incompressible plasmas slightly decreases the threshold Alfvén Mach number, \(M_{\mathrm{A}}^{\mathrm{cr}}\), and consequently the corresponding critical velocities, notably to \(114.4~\mbox{km}\,\mbox{s}^{-1}\) for the kink mode and to \(112.4~\mbox{km}\,\mbox{s}^{-1}\) for the higher \(m\) modes. We have also compared two analytically found criteria for predicting the threshold Alfvén Mach number for the onset of KH instability and have concluded that one of them yields reliable values for \(M_{\mathrm{A}}^{\mathrm{cr}}\). Our study of the nature of stable and unstable MHD modes propagating on the jet shows that in a stable regime all the modes are pure surface waves, while the unstable kink (\(m = 1\)) mode in untwisted compressible plasma flux tube becomes a leaky wave. In the limit of incompressible media (for the jet and its environment) all unstable modes are non-leaky surface waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajabshirizadeh, A., Ebadi, H., Vekalati, R.E., Molaverdikhani, K.: Astrophys. Space Sci. 357, 33 (2015)

    Article  ADS  Google Scholar 

  • Alexander, D., Fletcher, L.: Sol. Phys. 190, 167 (1999)

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Newkirk, G.: Sol. Phys. 9, 131 (1969)

    Article  ADS  Google Scholar 

  • Andries, J., Goossens, M.: Sol. Phys. 368, 1083 (2001)

    MATH  Google Scholar 

  • Appert, K., Gruber, R., Vaclavik, J.: Phys. Fluids 17, 1471 (1974)

    Article  ADS  Google Scholar 

  • Asgari-Targhi, M., van Ballegooijen, A.A., Cranmer, S.R., DeLuca, E.E.: Astrophys. J. 773, 111 (2013)

    Article  ADS  Google Scholar 

  • Berger, T.E., Slater, G., Hurlburt, N., et al.: Astrophys. J. 716, 1288 (2010)

    Article  ADS  Google Scholar 

  • Bondeson, A., Iacono, R., Bhattacharjee, A.: Phys. Fluids 30, 2167 (1987)

    Article  ADS  MATH  Google Scholar 

  • Cally, P.S.: Sol. Phys. 103, 277 (1986)

    Article  ADS  Google Scholar 

  • Canfield, R.C., Reardon, K.P., Leka, K.D., Shibata, K., Yokoyama, T., Shimojo, M.: Astrophys. J. 464, 1016 (1996)

    Article  ADS  Google Scholar 

  • Casanova, J., José, J., García-Berro, E., Shore, S.N., Calder, A.C.: Nature 478, 490 (2011)

    Article  ADS  Google Scholar 

  • Chae, J., Qiu, J., Wang, H., Goode, P.R.: Astrophys. J. 513, L75 (1999)

    Article  ADS  Google Scholar 

  • Chae, J., Moon, Y.-J., Park, S.-Y.: J. Korean Astron. Soc. 36, S13 (2003)

    Google Scholar 

  • Chandra, R., Gupta, G.R., Mulay, S., Tripathi, D.: Mon. Not. R. Astron. Soc. 446, 3741 (2014)

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon, Oxford (1961)

    MATH  Google Scholar 

  • Chen, H.D., Jiang, Y.C., Ma, S.L.: Astron. Astrophys. 478, 907 (2008)

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Isobe, H.: Living Rev. Sol. Phys. 11, 3 (2014)

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., De Pontieu, B., Tarbell, T.D., et al.: Astrophys. J. 801, 83 (2015)

    Article  ADS  Google Scholar 

  • Chifor, C., Isobe, H., Mason, H.E., et al.: Astron. Astrophys. 491, 279 (2008a)

    Article  ADS  Google Scholar 

  • Chifor, C., Young, P.R., Isobe, H., Mason, H.E., Tripathi, D., Hara, H., Yokoyama, T.: Astron. Astrophys. 481, L57 (2008b)

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., et al.: Sol. Phys. 289, 2733 (2014)

    Article  ADS  Google Scholar 

  • Dungey, J.W., Loughhead, R.E.: Aust. J. Phys. 7, 5 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Edwin, R., Roberts, B.: Sol. Phys. 88, 179 (1983)

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Gan, W.Q.: Astrophys. J. 774, 141 (2013)

    Article  ADS  Google Scholar 

  • Foullon, C., Farrugia, C.J., Owen, C.J., Fazakerley, A.N., Gratton, F.T.: Kelvin–Helmholtz multi-spacecraft studies at the Earth’s magnetopause boundaries. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference. AIP Conf. Proc., vol. 1216, p. 483. AIP, New York (2010)

    Google Scholar 

  • Foullon, C., Verwichte, E., Nakariakov, V.M., Nykyri, K., Farrugia, C.J.: Astrophys. J. 729, L8 (2011)

    Article  ADS  Google Scholar 

  • Foullon, C., Verwichte, E., Nykyri, K., Aschwanden, M.J., Hannah, I.G.: Astrophys. J. 767, 170 (2013)

    Article  ADS  Google Scholar 

  • Freidberg, J.P.: Ideal MHD. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  • Goedbloed, H.J.P., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2004), Chaps. 9–11

    Book  Google Scholar 

  • Goedbloed, J.P., Keppens, R., Poedts, S.: Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2010), Chaps. 12–14

    Book  Google Scholar 

  • Goossens, M., Andries, J., Soler, R., Van Doorsselaere, T., Arregui, I., Terradas, J.: Astrophys. J. 753, 111 (2012)

    Article  ADS  Google Scholar 

  • Handy, B.N., Acton, L.W., Kankelborg, C.C., et al.: Sol. Phys. 187, 229 (1999)

    Article  ADS  Google Scholar 

  • Holzwarth, V., Schmitt, D., Schüssler, M.: Astron. Astrophys. 469, 11 (2007)

    Article  ADS  MATH  Google Scholar 

  • Jardin, S.: Computational Methods in Plasma Physics. CRC Press, Boca Raton (2010), Chap. 8

    Book  MATH  Google Scholar 

  • Jiang, Y.C., Chen, H.D., Li, K.J., Shen, Y.D., Yang, L.H.: Astron. Astrophys. 469, 331 (2007)

    Article  ADS  Google Scholar 

  • Keppens, R., Tóth, G., Westermann, R.H.J., Goedbloed, J.P.: J. Plasma Phys. 61, 1 (1999)

    Article  ADS  Google Scholar 

  • Kim, Y.-H., Moon, Y.-J., Park, Y.-D., Sakurai, T., Chae, J., Cho, K.S., Bong, S.-C.: Publ. Astron. Soc. Jpn. 59, S763 (2007)

    Article  ADS  Google Scholar 

  • Ko, Y.-K., Raymond, J.C., Gibson, S.E., et al.: Astrophys. J. 623, 519 (2005)

    Article  ADS  Google Scholar 

  • Kuridze, D., Mathioudakis, M., Jess, D.B., Shelyag, S., Christian, D.J., Keenan, F.P., Balasubramaniam, K.S.: Astron. Astrophys. 533, A76 (2011)

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., et al.: Sol. Phys. 275, 17 (2012)

    Article  ADS  Google Scholar 

  • Liu, Y., Kurokawa, H.: Astrophys. J. 610, 1136 (2004)

    Article  ADS  Google Scholar 

  • Loureiro, N.F., Schekochihin, A.A., Uzdensky, D.A.: Phys. Rev. E 87, 013102 (2013)

    Article  ADS  Google Scholar 

  • Lundquist, S.: Phys. Rev. 83, 307 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Martínez-Gómez, D., Soler, R., Terradas, J.: Astron. Astrophys. 578, A104 (2015)

    Article  ADS  Google Scholar 

  • Maslowe, S.A.: Shear flow instabilities and transition. In: Swinney, H.L., Gollub, J.P. (eds.) Hydrodynamic Instabilities and the Transition to Turbulence, p. 181. Springer, Berlin (1985)

    Google Scholar 

  • Min, K.W., Lee, D.Y.: Geophys. Res. Lett. 23, 3667 (1996)

    Article  ADS  Google Scholar 

  • Miura, A.: J. Geophys. Res. Space Phys. 97, 1065 (1992)

    Article  Google Scholar 

  • Möstl, U.V., Temmer, M., Veronig, A.M.: Astrophys. J. 766, L12 (2013)

    Article  ADS  Google Scholar 

  • Nakariakov, V.M.: Adv. Space Res. 39, 1804 (2007)

    Article  ADS  Google Scholar 

  • Nishizuka, N., Shimizu, M., Nakamura, T., Otsuji, K., Okamoto, T.J., Katsukawa, Y., Shibata, K.: Astrophys. J. 683, L83 (2008)

    Article  ADS  Google Scholar 

  • Ofman, L., Thompson, B.J.: Astrophys. J. 734, L11 (2011)

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: Sol. Phys. 275, 3 (2012)

    Article  ADS  Google Scholar 

  • Priest, E.: Magnetohydrodynamics of the Sun. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  • Pu, Z.-P., Kivelson, M.G.: J. Geophys. Res. 88, 841 (1983)

    Article  ADS  Google Scholar 

  • Roy, J.R.: Sol. Phys. 28, 95 (1973)

    Article  ADS  Google Scholar 

  • Ruderman, M.S.: Philos. Trans. R. Soc. Lond. A 364, 485 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  • Rust, D.M., Webb, D.F., MacCombie, W.: Sol. Phys. 54, 53 (1977)

    Article  ADS  Google Scholar 

  • Ryutova, M., Berger, T., Frank, Z., Tarbell, T., Title, A.: Sol. Phys. 267, 75 (2010)

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: Sol. Phys. 6, 442 (1969)

    Article  ADS  Google Scholar 

  • Schmahl, E.J.: Sol. Phys. 69, 135 (1981)

    Article  ADS  Google Scholar 

  • Schmieder, B., Golub, L., Antiochos, S.K.: Astrophys. J. 425, 326 (1994)

    Article  ADS  Google Scholar 

  • Shibata, K., Ishido, Y., Acton, L.W., et al.: Publ. Astron. Soc. Jpn. 44, L173 (1992)

    ADS  Google Scholar 

  • Shibata, K., Nakamura, T., Matsumoto, T., et al.: Science 318, 1591 (2007)

    Article  ADS  Google Scholar 

  • Soler, R., Díaz, A.J., Ballester, J.L., Goossens, M.: Astrophys. J. 749, 163 (2012)

    Article  ADS  Google Scholar 

  • Terra-Homen, R., Erdélyi, R., Ballai, I.: Sol. Phys. 217, 199 (2003)

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Asgari-Targhi, M., Cranmer, S.R., DeLuca, E.E.: Astrophys. J. 736, 3 (2011)

    Article  ADS  Google Scholar 

  • Vasheghani Farahani, S., Van Doorsselaere, T., Verwichte, E., Nakariakov, V.M.: Astron. Astrophys. 498, L29 (2009)

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: Astrophys. J. 392, 310 (1992)

    Article  ADS  Google Scholar 

  • Wang, C., Blokland, J.W.S., Keppens, R., Goedbloed, J.P.: J. Plasma Phys. 70, 651 (2004)

    Article  ADS  Google Scholar 

  • Yang, L.-H., Jiang, Y.-C., Yang, J.-Y., Bi, Y., Zheng, R.-S., Hong, J.-C.: Res. Astron. Astrophys. 11, 1229 (2011)

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: Nature 375, 42 (1995)

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: Publ. Astron. Soc. Jpn. 48, 353 (1996)

    Article  ADS  Google Scholar 

  • Young, P.R., Del Zanna, G., Mason, H.E., Doschek, G.A., Culhane, L., Hara, H.: Publ. Astron. Soc. Jpn. 59, S727 (2007)

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V.: Solar spicules: recent challenges in observations and theory. In: Zhelyazkov, I., Mishonov, T. (eds.) 3rd School and Workshop on Space Plasma Physics. AIP Conf. Proc., vol. 1356, p. 106. AIP, New York (2011)

    Google Scholar 

  • Zaqarashvili, T.V., Díaz, A.J., Oliver, R., Ballester, J.L.: Astron. Astrophys. 516, A84 (2010)

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Vörös, Z., Zhelyazkov, I.: Astron. Astrophys. 561, A62 (2014)

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Zhelyazkov, I., Ofman, L.: Astrophys. J. 813, 123 (2015)

    Article  ADS  Google Scholar 

  • Zhang, B., Ge, Y.: Chin. Astron. Astrophys. 13, 366 (1989)

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Ji, H.S.: Astron. Astrophys. 567, A11 (2014)

    Article  ADS  Google Scholar 

  • Zhelyazkov, I.: Astron. Astrophys. 537, A124 (2012a)

    Article  ADS  Google Scholar 

  • Zhelyazkov, I.: Review of the magnetohydrodynamic waves and their stability in solar spicules and X-ray jets. In: Zheng, L. (ed.) Topics in Magnetohydrodynamics. InTech Publishing, Rijeka (2012b), Chap. 6

    Google Scholar 

  • Zhelyazkov, I.: Kelvin–Helmholtz instability of kink waves in photospheric, chromospheric, and X-ray solar jets. In: Zhelyazkov, I., Mishonov, T. (eds.) Space Plasma Physics: Proceedings of the 4th School and Workshop on Space Plasma Physics. AIP Conf. Proc., vol. 1551, p. 150. AIP, New York (2013)

    Google Scholar 

  • Zhelyazkov, I.: J. Astrophys. Astron. 36, 233 (2015)

    Article  ADS  Google Scholar 

  • Zhelyazkov, I., Zaqarashvili, T.V.: Astron. Astrophys. 547, A14 (2012)

    Article  ADS  Google Scholar 

  • Zhelyazkov, I., Chandra, R., Srivastava, A.K.: Bulg. J. Phys. 42, 68 (2015a)

    Google Scholar 

  • Zhelyazkov, I., Chandra, R., Srivastava, A.K., Mishonov, T.: Astrophys. Space Sci. 356, 231 (2015b)

    Article  ADS  Google Scholar 

  • Zhelyazkov, I., Zaqarashvili, T.V., Chandra, R.: Astron. Astrophys. 574, A55 (2015c)

    Article  ADS  Google Scholar 

  • Zhelyazkov, I., Zaqarashvili, T.V., Chandra, R., Srivastava, A.K., Mishonov, T.: Adv. Space Res. 56, 2727 (2015d)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian Science Fund and the Department of Science & Technology, Government of India Fund under Indo-Bulgarian bilateral project CSTC/INDIA 01/7, /Int/Bulgaria/P-2/12. The authors would like to thank the anonymous reviewer for her/his helpful and constructive comments that greatly contributed to improving the final version of the manuscript. We are also indebted to Snezhana Yordanova for drawing one figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zhelyazkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelyazkov, I., Chandra, R. & Srivastava, A.K. Kelvin–Helmholtz instability in an active region jet observed with Hinode . Astrophys Space Sci 361, 51 (2016). https://doi.org/10.1007/s10509-015-2639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2639-2

Keywords

Navigation