Skip to main content
Log in

Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The behavior of debris ejected from asteroids after collisional disruptions has significant implications for asteroid evolution. Analytical approximations of the elliptic restricted three-body system show that the behavior of ejecta varies significantly with the orbital eccentricity and true anomaly of an asteroid. To study these orbital perturbative effects on collision outcomes, we conduct a series of low-speed collision simulations using a combination of an \(N\)-body gravity algorithm and the soft-sphere discrete element method. The asteroid is modeled as a gravitational aggregate, which is one of the plausible structures for asteroids whose sizes are larger than several hundreds of meters. To reduce the effect of complicating factors raised by the mutual interaction between post-collision fragments on the outcomes, a low-resolution model and a set of frictionless material parameters are used in the first step of exploration. The results indicate that orbital perturbations on ejecta arising from the eccentricity and true anomaly of the target asteroid at the time of impact cause larger mass loss and lower the catastrophic disruption threshold (the specific energy required to disperse half the total system mass) in collision events. The “universal law” of catastrophic disruption derived by Stewart and Leinhardt (Astrophys. J. Lett. 691:L133–L137, 2009) can be applied to describe the collision outcomes of asteroids on elliptical heliocentric orbits. Through analyses of ejecta velocity distributions, we develop a semi-analytic description of escape speed from the asteroid’s surface in an elliptic restricted three-body system and show that resulting perturbations have long-term orbital effects on ejecta and can also have an indirect influence on the velocity field of post-fragments through interparticle collisions. Further exploration with a high-resolution model shows that the long-term perturbative effects systematically increase mass loss, regardless of the target’s material parameters and internal configuration, while indirect effect on mass loss is much more complicated and is enhanced when a coarse material or high-porosity model is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asphaug, E., Ostro, S.J., Hudson, R.S., Scheeres, D.J., Benz, W.: Disruption of kilometre-sized asteroids by energetic collisions. Nature 393(6684), 437–440 (1998)

    Article  ADS  Google Scholar 

  • Astakhov, S.A., Burbanks, A.D., Wiggins, S., Farrelly, D.: Chaos-assisted capture of irregular moons. Nature 423(6937), 264–267 (2003)

    Article  ADS  Google Scholar 

  • Ballouz, R.-L., Richardson, D.C., Michel, P., Schwartz, S.R.: Rotation-dependent catastrophic disruption of gravitational aggregates. Astrophys. J. 789(2), 158 (2014)

    Article  ADS  Google Scholar 

  • Ballouz, R.-L., Richardson, D.C., Michel, P., Schwartz, S.R., Yu, Y.: Numerical simulations of collisional disruption of rotating gravitational aggregates: dependence on material properties. Planet. Space Sci. 107, 29–35 (2015)

    Article  ADS  Google Scholar 

  • Benz, W., Asphaug, E.: Catastrophic disruptions revisited. Icarus 142(1), 5–20 (1999)

    Article  ADS  Google Scholar 

  • Bottke, W.F. Jr, Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S.: Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156(2), 399–433 (2002)

    Article  ADS  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • Durda, D.D., Bottke, W.F. Jr., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M.: The formation of asteroid satellites in large impacts: results from numerical simulations. Icarus 170(1), 243–257 (2004)

    Article  ADS  Google Scholar 

  • Durda, D.D., Movshovitz, N., Richardson, D.C., Asphaug, E., Morgan, A., Rawlings, A.R., Vest, C.: Experimental determination of the coefficient of restitution for meter-scale granite spheres. Icarus 211(1), 849–855 (2011)

    Article  ADS  Google Scholar 

  • Gong, S., Li, J.: Solar sail periodic orbits in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 121(2), 121–137 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  • Hamilton, D.P., Burns, J.A.: Orbital stability zones about asteroids. Icarus 92(1), 118–131 (1991)

    Article  ADS  Google Scholar 

  • Hamilton, D.P., Burns, J.A.: Orbital stability zones about asteroids. II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus 96(1), 43–64 (1992)

    Article  ADS  Google Scholar 

  • Housen, K.R., Holsapple, K.A.: Ejecta from impact craters. Icarus 211(1), 856–875 (2011)

    Article  ADS  Google Scholar 

  • Hussmann, H., Oberst, J., Wickhusen, K., Shi, X., Damme, F., Lüdicke, F., Lupovka, V., Bauer, S.: Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): implications for the MarcoPolo-R mission. Planet. Space Sci. 70(1), 102–113 (2012)

    Article  ADS  Google Scholar 

  • Jedicke, R., Metcalfe, T.S.: The orbital and absolute magnitude distributions of main belt asteroids. Icarus 131(2), 245–260 (1998)

    Article  ADS  Google Scholar 

  • Jewitt, D., Agarwal, J., Li, J., Weaver, H., Mutchler, M., Larson, S.: Disintegrating asteroid P/2013 R3. Astrophys. J. Lett. 784(1), L8–L12 (2014)

    Article  ADS  Google Scholar 

  • Jutzi, M., Michel, P.: Hypervelocity impacts on asteroids and momentum transfer. I. Numerical simulations using porous targets. Icarus 229, 247–253 (2014)

    Article  ADS  Google Scholar 

  • Leinhardt, Z.M., Richardson, D.C., Quinn, T.: Direct N-body simulations of rubble pile collisions. Icarus 146(1), 133–151 (2000)

    Article  ADS  Google Scholar 

  • Leinhardt, Z.M., Stewart, S.T.: Full numerical simulations of catastrophic small body collisions. Icarus 199(2), 542–559 (2009)

    Article  ADS  Google Scholar 

  • Leinhardt, Z.M., Stewart, S.T.: Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745(1), 79 (2012)

    Article  ADS  Google Scholar 

  • Lissauer, J.J.: Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993)

    Article  ADS  Google Scholar 

  • Makó, Z., Szenkovits, F.: Capture in the circular and elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 90(1–2), 51–58 (2004)

    Article  ADS  MATH  Google Scholar 

  • Michel, P., Benz, W., Richardson, D.C.: Catastrophic disruption of asteroids and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulations. Planet. Space Sci. 52(12), 1109–1117 (2004)

    Article  ADS  Google Scholar 

  • Pravec, P., Harris, A.W., Michalowski, T.: Asteroid rotations. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 113–122. Univ. of Arizona Press, Tucson (2002)

    Google Scholar 

  • Richardson, D.C., Quinn, T., Stadel, J., Lake, G.: Direct large-scale \(N\)-body simulations of planetesimal dynamics. Icarus 143(1), 45–59 (2000)

    Article  ADS  Google Scholar 

  • Richardson, D.C., Leinhardt, Z.M., Melosh, H.J., Bottke, W.F. Jr., Asphaug, E.: Gravitational aggregates: evidence and evolution. In: Asteroids III, pp. 501–515. University of Arizona Press, Tucson (2002)

    Google Scholar 

  • Richardson, D.C., Walsh, K., Murdoch, N., Michel, P.: Numerical simulations of granular dynamics. I. Hard-sphere discrete element method and tests. Icarus 212(1), 427–437 (2011)

    Article  ADS  Google Scholar 

  • Richter, K., Keller, H.U.: On the stability of dust particle orbits around cometary nuclei. Icarus 114(2), 355–371 (1995)

    Article  ADS  Google Scholar 

  • Sanchez, J.P., Colombo, C., Vasile, M., Radice, G.: Multicriteria comparison among several mitigation strategies for dangerous near-earth objects. J. Guid. Control Dyn. 32(1), 121–142 (2009)

    Article  ADS  Google Scholar 

  • Sánchez, P., Scheeres, D.J.: Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. Astrophys. J. 727(2), 120 (2011)

    Article  ADS  Google Scholar 

  • Schreck, C.F., Bertrand, T., O’Hern, C.S., Shattuck, M.D.: Repulsive contact interactions make jammed particulate systems inherently nonharmonic. Phys. Rev. Lett. 107(7), 078301 (2011)

    Article  ADS  Google Scholar 

  • Schwartz, S.R., Richardson, D.C., Michel, P.: An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granul. Matter 14(3), 363–380 (2012)

    Article  Google Scholar 

  • Schwartz, S.R., Michel, P., Richardson, D.C., Yano, H.: Low-speed impact simulations into regolith in support of asteroid sampling mechanism design. I. Comparison with 1-g experiments. Planet. Space Sci. 103, 174–183 (2014)

    Article  ADS  Google Scholar 

  • Stadel, J.G.: Cosmological N-body simulations and their analysis, Ph.D. thesis, University of Washington (2001)

  • Stewart, S.T., Leinhardt, Z.M.: Velocity-dependent catastrophic disruption criteria for planetesimals. Astrophys. J. Lett. 691(2), L133–L137 (2009)

    Article  ADS  Google Scholar 

  • Szebehely, V.: Stability of artificial and natural satellites. Celest. Mech. Dyn. Astron. 18(4), 383–389 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Voyatzis, G., Gkolias, I., Varvoglis, H.: The dynamics of the elliptic Hill problem: periodic orbits and stability regions. Celest. Mech. Dyn. Astron. 113(1), 125–139 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Walsh, K.J., Richardson, D.C.: Binary near-Earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006)

    Article  ADS  Google Scholar 

  • Yu, Y., Richardson, D.C., Michel, P., Schwartz, S.R., Ballouz, R.-L.: Numerical predictions of surface effects during the 2029 close approach of asteroid 99942 Apophis. Icarus 242, 82–96 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Basic Research Program of China (973 Program, 2012CB720000) and National Natural Science Foundation of China (NO. 11572166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexi Baoyin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Baoyin, H., Li, J. et al. Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids. Astrophys Space Sci 360, 30 (2015). https://doi.org/10.1007/s10509-015-2536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2536-8

Keywords

Navigation