Skip to main content
Log in

Kerr-dS/AdS null tetrads in modified teleparallel gravity theories and thermodynamics

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We apply a diagonal axially symmetric tetrad to the field equations of the lowest order of \(f(T)\), “where \(T\) is the teleparallel torsion scalar”, and get an exact vacuum solution which describes Kerr-dS/AdS spacetime. We rewrite the tetrad field of the derived solution in a null tetrad form and multiply it by a boost local Lorentz transformation, which contains unknown function of generalized coordinates, and get a new tetrad field. An exact vacuum solutions, which represents Kerr-dS/AdS spacetime, are derived under the following constraints: (i) The scalar torsion, \(T ={T^{\alpha}}_{\mu \nu}{S_{\alpha}}^{\mu \nu}=T_{0}\), where \(T_{0}\) is constant. (ii) The total derivative term is constant. (iii) The combination of the scalar torsion and the total derivative term is constant. We show that all the derived solutions coincide with general relativity solution when the constants of the torsion scalar, the total derivative term and the combination of the torsion scalar and total derivative term are vanishing. When the rotation parameter vanishing, the solution in the lower order of \(f(T)\) approaches asymptotically de Sitter spacetime, and show the existence of the Nariai spacetime as a background solution. The scalar torsion of Nariai spacetime is vanishing naturally without any constraint. Considering the perturbation around the Nariai spacetime up to the first order, we show the behavior of black hole horizon. We investigate that the anti-evaporation does not exist on the classical level. Finally, we used the total derivative term and the Euclidean continuation method to calculate the energy of Kerr-dS/AdS, entropy and temperature. The mass of a Kerr-dS/AdS black hole is interpreted, in terms of thermodynamic potentials, as being the enthalpy, with the pressure given by the cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The detailed calculations of the non-vanishing components of torsion and superpotential tensors are given in Appendix below. For brevity we use \(S\equiv S(r,\theta)\), \(S_{5}\equiv S_{5}(r,\theta)\) and \(S_{6}\equiv S_{6}(r,\theta)\).

References

Download references

Acknowledgements

The author would like to thank the anomalous Referee for his valuable comments, especially that related to Sect. 4, that made the manuscript in a more readable form. This work is partially supported by the Egyptian Ministry of Scientific Research under project No. 24-2-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal G. L. Nashed.

Appendix

Appendix

Using Eq. (3), we get the non-vanishing components of the torsion \({T^{\mu}}_{\nu \rho}\) in the form

$$\begin{aligned} & {T^{0}}_{01}=\frac{2S[r^{2}+a^{2}]\xi_{t}+S_{5}S_{r}-S_{5r}[r^{2}+a^{2}]}{2SS_{5}}, \\ & {T^{0}}_{02}=\frac{SS_{6}S_{\theta}+a^{2}SS_{6}\sin2\theta+a^{2}SS_{6\theta}\sin^{2}\theta}{2S^{2}S_{6}}, \\ & {T^{0}}_{21}=\frac{(r^{2}+a^{2})S \xi_{\theta}}{SS_{5}}, \\ & {T^{0}}_{32}=\frac{\varOmega a (r^{2}+a^{2})\sin\theta[2S_{6}\cos\theta-\sin\theta S_{6_{\theta}}]}{2S S_{6}}, \\ & {T^{0}}_{13}=\frac{\varOmega a\sin^{2}\theta [4rS_{5}S_{6}+(r^{2}+a^{2})(S_{5}S_{6r}-S_{6}S_{5r})]}{2SS_{5}S_{6}}, \\ & {T^{1}}_{21}=\frac{S_{\theta}}{2S},\qquad {T^{1}}_{31}=\frac{\varOmega a\sin^{2}\theta S_{5} \xi_{r} }{S}, \\ & {T^{1}}_{10}=\frac{S_{5} \xi_{r}}{S},\qquad {T^{1}}_{32}=\frac{\varOmega a\sin^{2}\theta S_{5} \xi_{\theta}}{S}, \\ & {T^{1}}_{20}=\frac{S_{5} \xi_{\theta}}{S},\qquad {T^{1}}_{30}=\frac{\varOmega a\sin^{2}\theta S_{5} \xi_{t} }{S}, \\ & {T^{2}}_{12}=\frac{S_{r}}{2S }, \qquad {T^{3}}_{21}=\frac{a S \xi_{\theta}}{\varOmega S S_{5}}, \\ & {T^{3}}_{13}=\frac{4rS_{5}-a^{2}\sin^{2}\theta S_{5r}-S_{5}S_{r}}{2S S_{5}}, \\ & {T^{3}}_{01}=\frac{a[2S\xi_{t}-S_{5r}]}{2\varOmega SS_{5}}, \\ &{T^{3}}_{02}= \frac{a[2S_{6}\cos\theta+\sin\theta S_{6\theta}]}{2\varOmega SS_{6} \sin\theta}, \\ & {T^{3}}_{23}=\bigl\{ 2a^{2}SS_{6}\cos\theta \cos2\theta -\sin\theta SS_{6}S_{\theta}+2r^{2}SS_{6}\cos\theta \\ &\phantom{{T^{3}}_{23}=\,}+\sin\theta\bigl(r^{2}+a^{2}\bigr)SS_{6\theta}\bigr\} \bigl\{ 2S^{2} S_{6}\sin\theta\bigr\} ^{-1}, \end{aligned}$$
(67)

and the non-vanishing components of the superpotential tensor \({S_{\mu}}^{\nu \rho} \)

$$\begin{aligned} & {S_{0}}^{01}=\bigl\{ a^{2}\bigl(S S_{5r}+2r\bigl[r^{2}+a^{2}\bigr]S_{6}\bigr)\sin^{2}\theta \\ &\phantom{{S_{0}}^{01}=\,}-2S_{5}\bigl[2r^{2}+a^{2}\bigl(1+\cos^{2}\theta\bigr)\bigr]\bigr\} \bigl\{ 4S^{3}\bigr\} ^{-1}, \\ & {S_{0}}^{02}=-\bigl\{ 2\cos\theta\bigl\{ S_{6}\bigl(2a^{4}\cos^{4}\theta+2a^{2}\cos^{2}\theta\bigl[ r^{2}-a^{2}\bigr] \\ &\phantom{{S_{0}}^{02}=\,}+r^{4}+a^{4}\bigr) -a^{2}S_{5}\sin^{2}\theta\bigr\} +S\bigl(r^{2}+a^{2}\bigr)S_{6\theta}\sin\theta \bigr\} \\ &\phantom{{S_{0}}^{02}=\,}\times\bigl\{ 4S^{3}\sin\theta\bigr\} ^{-1}, \\ & {S_{0}}^{03}=-\frac{a \xi_{r}}{2\varOmega S}, \\ & {S_{0}}^{13}=\frac{aS_{6}(2S^{2}\xi_{t}-[SS_{5r}+2r\{a^{2}S_{6}\sin^{2}\theta-S_{5}\}])}{4S^{3} S \varOmega}, \\ & {S_{0}}^{23}=\frac{ a [S S_{6\theta}\sin\theta +2\cos\theta(S_{6}(r^{2}+a^{2})-S_{5})]}{4S^{3}\varOmega \sin\theta}, \\ & {S_{1}}^{30}=\frac{a r S}{2\varOmega S^{2} S_{5}},\qquad {S_{2}}^{03}= \frac{a \cos\theta}{2\varOmega S S_{6} \sin\theta}, \\ & {S_{1}}^{21}=\bigl\{ S^{2} S_{6\theta}\sin\theta+2S_{6}\bigl[S\bigl(r^{2}+a^{2}\bigl\{ 3\cos^{2}\theta-2\bigr\} \bigr) \\ &\phantom{{S_{1}}^{21}=\,} -S S_{\theta}\sin\theta\bigr]\bigr\} \bigl\{ 4S^{3}\sin\theta\bigr\} ^{-1}, \\ & {S_{2}}^{13}={S_{2}}^{32}=\frac{a \xi_{t}}{2\varOmega S },\\ & {S_{2}}^{21}=\frac{2S^{2}S_{6}(r^{2}+a^{2})\xi_{t}-SS_{6}[ SS_{5r}+4rS_{5}-2S_{5}S_{r} ]}{4S^{3}S_{6}}, \\ & {S_{2}}^{10}={S_{2}}^{02}={S_{3}}^{03}=\frac{(r^{2}+a^{2}) \xi_{t}}{2 S }, \\ & {S_{3}}^{31}=\bigl\{ 2S S_{6}\xi_{t}\bigl(r^{2}+a^{2}\bigr)S-S_{6}\bigl\{ S\bigl(r^{2}+a^{2}\bigr)S_{5r} \\ &\phantom{{S_{3}}^{31}=\,} +2r a^{2}\sin^{2}\theta\bigl[S_{6}\bigl(r^{2}+a^{2}\bigr)-S_{8}\bigr]\bigr\} \bigr\} \bigl\{ 4S^{3}S_{6}\bigr\} ^{-1}, \\ & {S_{3}}^{10}=\bigl\{ a\varOmega \sin^{2}\theta S_{6}\bigl\{ SS_{5r}\bigl(r^{2}+a^{2}\bigr)+2rS_{6}\bigl(r^{2}+a^{2}\bigr)^{2} \\ &\phantom{{S_{3}}^{10}=\,} -2rS_{5}\bigl(2r^{2}+a^{2}\bigl[1+\cos^{2}\theta\bigr]\bigr)\bigr\} \bigr\} \bigl\{ 4S^{3}S_{6}\bigr\} ^{-1}, \\ & {S_{3}}^{32}=\bigl\{ a^{2}\bigl\{ SS_{6\theta}\sin^{2}\theta+\sin2\theta\bigl[\bigl(2r^{2}+a^{2}\bigl[1+\cos^{2}\theta\bigr]\bigr) S_{6} \\ &\phantom{{S_{3}}^{32}=\,} -S_{5}\bigr]\bigr\} \bigr\} \bigl\{ 4S^{3}\bigr\} ^{-1}, \\ & {S_{3}}^{02}=\bigl\{ a \varOmega \sin^{2}\theta \bigl\{ SS_{6\theta}\bigl(r^{2}+a^{2}\bigr)+a^{2}\sin2\theta \bigl[\bigl(r^{2}+a^{2}\bigr)S_{6} \\ &\phantom{{S_{3}}^{02}=\,}-S_{5}\bigr]\bigr\} \bigr\} \bigl\{ 4S^{3}\bigr\} ^{-1}. \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashed, G.G.L. Kerr-dS/AdS null tetrads in modified teleparallel gravity theories and thermodynamics. Astrophys Space Sci 358, 42 (2015). https://doi.org/10.1007/s10509-015-2456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2456-7

Keywords

Navigation