Skip to main content
Log in

Analytical criteria of Hill stability in the elliptic restricted three body problem

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Due to the time-dependent Jacobi integral in the elliptic restricted three body problem, it is difficult to develop analytical criteria of Hill stability. In this paper, the Hill stability of the orbit around the one primary is concerned. Several analytical criteria are established based on the bifurcation of the extremum of the Jacobi integral. One criterion is used to judge the Hill stability of the orbit with orbit size known. One criterion is used to judge the Hill stability of the orbit with orbital element completely known. These criteria are applied to the judge the Hill stability of Jupiter’s moons and planets in three stellar binaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Black, D.C.: A simple criterion for determining the dynamical stability of three body systems. Astron. J. 87(9), 1333–1337 (1982)

    Article  ADS  Google Scholar 

  • Bozis, G.: Zero velocity surfaces for the general planar three-body problem. Astrophys. Space Sci. 43, 355–368 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brasser, R.: Hill stability of a triple system with an inner binary of a large mass ratio. Mon. Not. R. Astron. Soc. 332, 723–728 (2002)

    Article  ADS  Google Scholar 

  • Donnison, J.R.: The stability of binary star systems during encounters with a third star. Mon. Not. R. Astron. Soc. 210, 915–927 (1984)

    Article  ADS  MATH  Google Scholar 

  • Donnison, J.R.: The effects of eccentricity on the hierarchical stability of low-mas binaries in three-body systems. Mon. Not. R. Astron. Soc. 231, 85–95 (1988)

    Article  ADS  MATH  Google Scholar 

  • Donnison, J.R., Mikulskis, D.F.: Three-body orbital stability criteria for circular orbits. Mon. Not. R. Astron. Soc. 254, 21–26 (1992)

    Article  ADS  Google Scholar 

  • Donnison, J.R., Mikulskis, D.F.: Three-body orbital stability criteria for circular retrograde orbits. Mon. Not. R. Astron. Soc. 266, 25–30 (1994)

    Article  ADS  Google Scholar 

  • Donnison, J.R., Williams, I.P.: The stability of coplanar three-body systems with application to the solar system. Celest. Mech. 31, 123–128 (1983)

    Article  ADS  MATH  Google Scholar 

  • Donnison, J.R., Williams, I.P.: The hierarchical stability of satellite systems. Mon. Not. R. Astron. Soc. 215, 567–573 (1985)

    Article  ADS  Google Scholar 

  • Donnison, J.R.: The Hill stability of a binary or planetary system during encounters with a third inclined body. Mon. Not. R. Astron. Soc. 369, 1267–1280 (2006)

    Article  ADS  Google Scholar 

  • Donnison, J.R.: The Hill stability of inclined bound triple star and planetary systems. Planet. Space Sci. 57, 771–783 (2009)

    Article  ADS  Google Scholar 

  • Donnison, J.R.: The Hill stability of the possible moons of extrasolar planets. Mon. Not. R. Astron. Soc. 406, 1918–1934 (2010)

    ADS  Google Scholar 

  • Donnison, J.R.: The Hill stability of binary asteroid and binary Kuiper Belt systems. Mon. Not. R. Astron. Soc. 415, 470–486 (2011)

    Article  ADS  Google Scholar 

  • Donnison, J.R.: Limits on the orbits of possible eccentric and inclined moons of extrasolar planets orbiting single stars. Earth Moon Planets 113, 73–93 (2014)

    Article  ADS  Google Scholar 

  • Dvorak, R., Pilat-Lohinger, E., Bois, E., Funk, B., Freistetter, F., Kiseleva-Eggleton, L.: Planets in double stars: the gamma Cephei system. In: Allen, C., Scarfe, C. (eds.) The Environment and Evolution of Double and Multiple Stars, Merida, Yucatan, Mexico 3–7 February 2003. Proceedings of IAU Colloquium, vol. 191 (2003). Rev. Mex. Astron. Astrofís., Ser. Conf. 21, 222–226 (2004)

    Google Scholar 

  • Easton, R.: Some topology of the 3-body problem. J. Differ. Equ. 10, 371–377 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eggleton, P.P., Kiseleva, L.: An empirical condition for stability of hierarchical triple systems. Astron. J. 455, 640–645 (1995)

    Article  ADS  Google Scholar 

  • Evans, D.S.: Stars of higher multiplicity. Q. J. R. Astron. Soc. 9, 388–400 (1968)

    ADS  Google Scholar 

  • Georgakarakos, N.: Stability criteria for hierarchical triple systems. Celest. Mech. Dyn. Astron. 100, 151–168 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Georgakarakos, N.: The dependence of the stability of hierarchical triple systems on the orbital inclination. New Astron. 23–24, 41–48 (2013)

    Article  Google Scholar 

  • Gong, S.P., Li, J.F.: Solar sail periodic orbits in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 121(2), 121–137 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Gong, S.P., Li, J.F.: Planetary capture and escape in the planar four-body problem. Astrophys. Space Sci. 357, 155 (2015)

    Article  ADS  Google Scholar 

  • Harrington, R.S.: Stability criteria for triple stars. Celest. Mech. 6, 322–327 (1972)

    Article  ADS  Google Scholar 

  • Harrington, R.S.: Production of triple stars by the dynamical decay of small stellar systems. Astron. J. 80, 1081–1086 (1975)

    Article  ADS  Google Scholar 

  • Harrington, R.S.: Planetary orbits in binary stars. Astron. J. 82, 753–756 (1977)

    Article  ADS  Google Scholar 

  • Hill, G.W.: Researches in the lunar theory. Am. J. Math. 1(1), 5–26 (1878)

    Article  MATH  Google Scholar 

  • Holman, M.J., Wiegert, P.: Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999)

    Article  ADS  Google Scholar 

  • Khodykin, S.A., Zakharov, A.I., Andersen, W.L.: Stability of triple star systems with highly inclined orbits. Astron. J. 615, 506–511 (2004)

    Article  ADS  Google Scholar 

  • Kiseleva, L.G., Eggleton, P.P., Orlov, V.V.: Instability of close triple systems with coplanar initially doubly circular motion. Mon. Not. R. Astron. Soc. 270, 936–946 (1994)

    Article  ADS  Google Scholar 

  • Kubala, A., Black, D., Szebehely, V.: Stability of outer planetary orbits around binary stars: a comparison of Hill’s and Laplace’s stability criteria. Celest. Mech. Dyn. Astron. 56, 51–68 (1993)

    Article  ADS  MATH  Google Scholar 

  • Li, J., Fu, Y.N., Sun, Y.S.: The Hill stability of low mass binaries in hierarchical triple systems. Celest. Mech. Dyn. Astron. 107, 21–34 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Liu, X.D., Baoyin, H.X., Georgakarakos, N., Donnison, J.R., Ma, X.R.: The Hill stability of triple minor planets in the solar system. Mon. Not. R. Astron. Soc. 427, 1034–1042 (2012)

    Article  ADS  Google Scholar 

  • Lohinger, E.P., Funk, B., Dvorak, R.: Stability limits in double stars: a study of inclined planetary orbits. Astron. Astrophys. 400, 1085–1094 (2003)

    Article  ADS  Google Scholar 

  • Lukyanov, L.G.: A coordinate form for the Sundman surfaces in the general three-body problem. Astron. Rep. 55(8), 742–752 (2011)

    Article  ADS  Google Scholar 

  • Lukyanov, L.G., Shirmin, G.I.: Sundman surfaces and Hill stability in the three-body problem. Astron. Lett. 33(8), 550–561 (2007)

    Article  ADS  Google Scholar 

  • Mako, Z.: Capture in the circular and elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 90(1–2), 51–58 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mako, Z.: Pulsating zero velocity surfaces and capture in the spatial elliptic restricted three-body problem. Publ. Astron. Dep. Eötvös Univ. 15, 221–229 (2005)

    Google Scholar 

  • Mako, Z.: Connection between Hill stability and weak stability in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 120, 233–248 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Mako, Z., Szenkovits, F.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astron. 101, 273–287 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mako, Z., Szenkovits, F., Salamon, J., Olah-Gal, R.: Stable and unstable orbits around Mercury. Celest. Mech. Dyn. Astron. 108, 357–370 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Marchal, C., Saari, D.G.: Hill regions for the general three-body problem. Celest. Mech. 12, 115–129 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nacozy, P.E.: On the stability of the Solar System. Astron. J. 81, 787–791 (1976)

    Article  ADS  Google Scholar 

  • Qi, Y., Xu, S.J.: Lunar capture in the planar restricted three-body problem. Celest. Mech. Dyn. Astron. 120(4), 401–422 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Qi, Y., Xu, S.J., Qi, R.: Gravitational lunar capture based on bicircular model in restricted four body problem. Celest. Mech. Dyn. Astron. 120(1), 1–17 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Rakhimov, F.S.: Derivation of the Sundman inequality and Jacobi integral from the integrals of motion in the general three-body problem. Sov. Astron. Lett. 3, 23–24 (1977)

    ADS  Google Scholar 

  • Saari, D.G.: Restrictions on the motion of the three-body problem. SIAM J. Appl. Math. 26(4), 806–815 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Smale, S.: Topology and mechanics. II. Invent. Math. 11, 45–64 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sosnitskii, S.P.: On the bounded symmetrical motions in the three-body problem. Int. J. Non-Linear Mech. 67, 34–38 (2014)

    Article  ADS  Google Scholar 

  • Szebehely, V.G.: Zero velocity curves and orbits in the restricted problem of three bodies. Astron. J. 68(3), 147–151 (1963)

    Article  ADS  Google Scholar 

  • Szebehely, V.G.: On the elliptic restricted problem of three bodies. Astron. J. 69(3), 230–235 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  • Szebehely, V.G.: Analytical determination of the measure of stability of triple stellar systems. Celest. Mech. 15, 107–110 (1977)

    Article  ADS  Google Scholar 

  • Szenkovits, F., Mako, Z.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astron. 101, 273–287 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Valsecchi, G.B., Carusi, A., Roy, A.E.: The effect of orbital eccentricities on the shape of the Hill-type analytical stability surfaces in the general three-body problem. Celest. Mech. 32, 217–230 (1984)

    Article  ADS  MATH  Google Scholar 

  • Walker, I.W.: Stability criteria in many-body systems. IV. Empirical stability parameters for general hierarchical dynamical systems. Celest. Mech. 29, 149–178 (1983)

    Article  ADS  MATH  Google Scholar 

  • Walker, I.W., Roy, A.E.: Stability criteria in many-body systems. III. Empirical stability region for co-rotational, coplanar hierarchical three-body problems. Celest. Mech. 29, 117–148 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Walker, I.W., Emsile, A.G., Roy, A.E.: Stability criteria in many-body systems. I. An empirical stability criterion for co-rotational three-body problem. Celest. Mech. 22, 371–402 (1980)

    Article  ADS  MATH  Google Scholar 

  • Walker, I.W., Emsile, A.G., Roy, A.E.: Stability criteria in many-body systems. II. On a sufficient condition for the stability of coplanar hierarchical three-body systems. Celest. Mech. 24, 195–225 (1981)

    Article  ADS  MATH  Google Scholar 

  • Xu, M., Xu, S.J.: Exploration of distant retrograde orbits around Moon. Acta Astronaut. 65(5–6), 853–860 (2009)

    Google Scholar 

  • Zare, K.: Bifurcation points in the planar problem of three bodies. Celest. Mech. 16, 35–38 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (Grants No. 11272004 and 11422001) and the National Basic Research Program of China (973 Program, 2012CB720000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Li, J. Analytical criteria of Hill stability in the elliptic restricted three body problem. Astrophys Space Sci 358, 37 (2015). https://doi.org/10.1007/s10509-015-2436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2436-y

Keywords

Navigation