Skip to main content
Log in

An impact model of Newton’s law of gravitation

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The far-reaching gravitational force—in the approximation of Newton’s law of gravitation—is described by a heuristic model with hypothetical massless particles propagating at the speed of light in vacuum and transferring momentum and energy between physical entities through interactions on a local basis. The model has some similarities with the impact theory presented by Nicolas Fatio de Duillier to the Royal Society in 1690. Objections raised against this idea are dispelled by invoking the Special Theory of Relativity, considering non-local interactions, and replacing the shielding concept by a secular mass increase of massive bodies. Some consequences and applications of the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649 (1961)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Amoroso, R.L., Vigier, J.-P.: Toward the unification of gravity and electromagnetism. In: Dvoeglazov, V.V., Espinoza, A.A. (eds.) Relativity, Gravitation, Cosmology. Nova Science, New York (2004)

    Google Scholar 

  • Arp, H.C.: Companion galaxies: a test of the assumption that velocities can be inferred from redshifts. Astrophys. J. 430, 74 (1994)

    Article  ADS  Google Scholar 

  • Arp, H.C., Burbidge, G., Hoyle, F., Wickramasinghe, N.C., Narlikar, J.V.: The extragalactic Universe: an alternative view. Nature 346, 807 (1990)

    Article  ADS  Google Scholar 

  • Beck, C., Mackey, M.C.: Could dark energy be measured in the lab? Phys. Lett. B 605, 295 (2005)

    Article  ADS  Google Scholar 

  • Berger, G.: An alternative theory of gravitation, derived from the Fatio–Le Sage theory. Apeiron 15, 235 (2008)

    Google Scholar 

  • Bohr, N.: Discussions with Einstein on epistemological problems in atomic physics. In: Albert Einstein: Philosopher-Scientist. Cambridge University Press, Cambridge (1949)

    Google Scholar 

  • Bonnor, W.B.: Charge moving with the speed of light. Nature 225, 932 (1970)

    Article  ADS  Google Scholar 

  • Bopp, K.: Fatio de Duillier: de la cause de la pesanteur. Schr. Straßburg. Wiss. Ges. Heidelb. 10, 19 (1929)

    Google Scholar 

  • Carlip, S.: Aberration and the speed of gravity. Phys. Lett. A 267, 81 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Compton, A.H.: A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483 (1923)

    Article  ADS  Google Scholar 

  • de Broglie, L.: Ondes et quanta. C. R. Acad. Sci. 177, 507 (1923)

    Google Scholar 

  • Dirac, P.A.M.: The cosmological constants. Nature 139, 323 (1937)

    Article  MATH  ADS  Google Scholar 

  • Dirac, P.A.M.: Is there an Æther? Nature 168, 906 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  • Drude, P.: Ueber Fernewirkungen. Ann. Phys. (Leipzig) 268, I (1897)

  • Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. (Leipz.) 322, 891 (1905a)

    Article  ADS  Google Scholar 

  • Einstein, A.: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann. Phys. (Leipz.) 323, 639 (1905b)

    Article  ADS  Google Scholar 

  • Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. (Leipz.) 354, 769 (1916)

    Article  ADS  Google Scholar 

  • Einstein, A.: Zur Quantentheorie der Strahlung. Z. Phys. XVIII, 121 (1917)

    Google Scholar 

  • Fahr, H.-J.: Universum Ohne Urknall. Kosmologie in der Kontroverse. Spektrum Akad. Verlag, Berlin, Heidelberg, Oxford (1995)

    Google Scholar 

  • Fahr, H.-J., Heyl, M.: Cosmic vacuum energy decay and creation of cosmic matter. Naturwissenschaften 94, 709 (2007)

    Article  ADS  Google Scholar 

  • Gagnebin, B.: De la cause de la pesanteur. Mémoire de Nicolas Fatio de Duillier. Notes Rec. R. Soc. Lond. 6, 105 (1949)

    Article  Google Scholar 

  • Gordon, W.: Zur Berechnung der Matrizen beim Wasserstoffatom. Ann. Phys. (Leipz.) 394, 1031 (1929)

    Article  ADS  Google Scholar 

  • Gupta, S.N.: Gravitation and electromagnetism. Phys. Rev. 96, 1683 (1954)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Gupta, R.C.: Gravity as the second-order relativistic-manifestation of electrostatic-force (2005). arXiv:physics/0505194v1

  • Gupta, R.C., Pradhan, A., Gupta, S.: Refraction-based alternative explanation for: bending of light near a star, gravitational red/blue shift and black-hole (2010). arXiv:1004.1467v1

  • Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as a zero-point-field Lorentz force. Phys. Rev. A 49, 678 (1994)

    Article  ADS  Google Scholar 

  • Heaviside, O.: On the forces, stresses, and fluxes of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. A 183, 423 (1892)

    Article  MATH  ADS  Google Scholar 

  • Hestenes, D.: The Zitterbewegung interpretation of quantum mechanics. Found. Phys. 20, 1213 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Hilgevoord, J.: The uncertainty principle for energy and time. II. Am. J. Phys. 66, 396 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  • Hoyle, F.: A new model for the expanding Universe. Mon. Not. R. Astron. Soc. 108, 372 (1948)

    MATH  ADS  Google Scholar 

  • Huang, K.: On the zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479 (1952)

    Article  MATH  ADS  Google Scholar 

  • Jackiw, R., Kabat, D., Ortiz, M.: Electromagnetic fields of a massless particle and the eikonal. Phys. Lett. B 277, 148 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Jackson, J.D.: Klassische Elektrodynamik, 4. Aufl. Walter de Gruyter, Berlin, New York (2006)

    Book  Google Scholar 

  • Jeans, J.H.: Astronomy and Cosmogony. The University Press, Cambridge (1928)

    MATH  Google Scholar 

  • Kosyakov, B.P.: Massless interacting particles. J. Phys. A, Math. Theor. 41, 465401-1 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Landé, A.: On advanced and retarded potentials. Phys. Rev. 80, 283 (1950)

    Article  ADS  Google Scholar 

  • Levshakov, S.A.: Astrophysical constraints on hypothetical variability of fundamental constants. Lect. Notes Phys. 648, 151 (2004)

    Article  ADS  Google Scholar 

  • Lewis, G.N.: The conservation of photons. Nature 118, 874 (1926)

    Article  ADS  Google Scholar 

  • Low, F.E., Mende, P.F.: A note on the tunneling time problem. Ann. Phys. 210, 380 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Marsh, G.E., Nissim-Sabat, C.: Comment on “The speed of gravity”. Phys. Lett. A 262, 257 (1999)

    Article  ADS  Google Scholar 

  • Mandelstam, L.I., Tamm, I.E.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. USSR 9, 249 (1945)

    MathSciNet  Google Scholar 

  • Mermin, N.D.: Relativity without light. Am. J. Phys. 52, 119 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2006. J. Phys. Chem. Ref. Data 37, 1187 (2008)

    Article  ADS  Google Scholar 

  • Nimtz, G., Stahlhofen, A.A.: Universal tunneling time for all fields. Ann. Phys. 17, 374 (2008)

    Article  Google Scholar 

  • Page, L.: Is a moving mass retarded by the reaction of its own radiation? Phys. Rev. XI, 376 (1918)

    Article  Google Scholar 

  • Penrose, R.: The Road to Reality. Alfred A. Knopf, New York (2006)

    Google Scholar 

  • Perlmutter, S., Turner, M.S., White, M.: Constraining dark energy with type Ia supernovae and large-scale structure. Phys. Rev. Lett. 83, 670 (1999)

    Article  ADS  Google Scholar 

  • Poincaré, H.: The theory of Lorentz and the principle of reaction. Arch. Neerl. Sci. Exactes Nat. 5, 252 (1900)

    MATH  Google Scholar 

  • Preston, S.T.: Physics of the Ether. E. & F.N. Spon, London, New York (1875)

    Google Scholar 

  • Riess, A.G., Nugent, P.E., Gilliland, R.L., Schmidt, B.P., Tonry, J., Dickinson, M., Thompson, R.I., Budavári, T., Casertano, S., Evans, A.S., Filippenko, A.V., Livio, M., Sanders, D.B., Shapley, A.E., Spinrad, H., Steidel, C.C., Stern, D., Surace, J., Veilleux, S.: The farthest known Supernova: support for an accelerating Universe and a glimpse of the epoch of deceleration. Astrophys. J. 560, 49 (2001)

    Article  ADS  Google Scholar 

  • Ritz, W.: Zur Theorie der Serienspektren. Ann. Phys. (Leipz.) 317, 264 (1903)

    Article  ADS  Google Scholar 

  • Robertson, H.P.: Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423 (1937)

    MATH  ADS  Google Scholar 

  • Schlegel, R.: Gravitation and mass decrease. Found. Phys. 12, 781 (1982)

    Article  ADS  Google Scholar 

  • Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. 418 (1930)

  • Schrödinger, E.: Zur Quantendynamik des Elektrons. Sitz. Preuss. Akad. Wiss., phys.-math. Kl. 63 (1931)

  • Schwarzschild, K.: Zur Elektrodynamik. II. Die elementare elektrodynamische Kraft. Gött. Nachr. 128, 132 (1903)

    Google Scholar 

  • Spitzer, L. Jr.: The dynamics of the interstellar medium. II. Radiation pressure. Astrophys. J. 94, 232 (1941)

    Article  MATH  ADS  Google Scholar 

  • Stahlhofen, A.A., Nimtz, G.: Evanescent modes are virtual photons. Europhys. Lett. 76, 189 (2006)

    Article  ADS  Google Scholar 

  • Van Flandern, T.: The speed of gravity—what the experiments say. Phys. Lett. A 250, 1 (1998)

    Article  ADS  Google Scholar 

  • Vigier, J.-P.: Derivation of inertial forces from the Einstein–de Broglie–Bohm (E.d.B.B.) causal stochastic interpretation of quantum mechanics. Found. Phys. 25, 1461 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  • von Laue, M.: Das Relativitätsprinzip. Friedr. Vieweg & Sohn, Braunschweig (1911)

    MATH  Google Scholar 

  • v. Weizsäcker, C.F.: Ausstrahlung bei Stößen sehr schneller Elektronen. Z. Phys. 88, 612 (1934)

    Article  ADS  Google Scholar 

  • Weinberg, S.: Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass. Phys. Rev. 135, B1049 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  • Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21, 425 (1949)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Wilhelm, K., Fröhlich, C.: Photons—from source to detector. In: Huber, M.C.E., et al. (eds.) Observing Photons in Space. ISSI SR-009, p. 23. ESA Communications, Noordwijk (2010)

    Google Scholar 

  • Wilhelm, K., Dwivedi, B.N.: Gravity, massive particles, photons and Shapiro delay. Astrophys. Space Sci. (2012 in press). doi:10.1007/s10509-012-1207-2

    Google Scholar 

  • Yukawa, H.: On the interaction of elementary particles I. Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    Google Scholar 

  • Zehe, H.: Die Gravitationstheorie des Nicolas Fatio de Duillier. Arch. Hist. Exact Sci. 28, 1 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for constructive comments, and Eckart Marsch, Harry Kohl, Luca Teriaca, Werner Curdt, and Bernd Inhester for many discussions on these topics. Their critical comments have been very helpful in formulating our ideas. This research has made extensive use of the Astrophysics Data System (ADS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhola N. Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, K., Wilhelm, H. & Dwivedi, B.N. An impact model of Newton’s law of gravitation. Astrophys Space Sci 343, 135–144 (2013). https://doi.org/10.1007/s10509-012-1206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-012-1206-3

Keywords

Navigation