Skip to main content
Log in

Universal characteristics of ion-acoustic wave dynamics in magnetized plasmas with emphasis on Tsallis distribution

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Using the extended Poincaré-Lighthill-Kuo (PLK) reductive perturbation method, which incorporates the phase-shift variations, it is shown that common features on propagation and head-on collisions of ion-acoustic waves exist for a magnetized plasmas of different inertial-less particle distributions. For instance it is remarked that, the soliton amplitude is always independent of magnetic field strength while strictly depends on its angle regarding the propagation direction. Both types of solitons (compressive or rarefactive) are shown to exist which are defined through the critical angle γ=π/2 or other critical values depending on plasma fractional parameters. These critical plasma parameter values also define the sign of head-on collision phase shift. Furthermore, it is proved that for a given set of plasma parameters there is always a relative angle of propagation regarding to that of the magnetic-field for which the soliton width is maximum. Current findings apply to a wide range of magnetized plasmas including those containing background dust ingredients or two-temperature inertial-less particles and may be used to study laboratory or astrophysical magnetoplasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, H., Pajouh, H.H.: Phys. Plasmas 012307, 14 (2007)

    Google Scholar 

  • Abdelsalama, U.M., Moslem, W.M., Ali, S., Shukla, P.K.: Phys. Lett. A 4923, 372 (2008)

    Google Scholar 

  • Akbari-Moghanjoughi, M.: Phys. Lett. A 1721, 374 (2010a)

    Google Scholar 

  • Akbari-Moghanjoughi, M.: IEEE Trans. Plasma Sci. (2010b). doi:10.1109/TPS.2010.2083700

    Google Scholar 

  • Akbari-Moghanjoughi, M.: Phys. Plasmas 072101, 17 (2010c)

    Google Scholar 

  • Akbari-Moghanjoughi, M.: Astrophys. Space Sci. (2010d). doi:10.1007/s10509-011-0650-9

  • Akbari-Moghanjoughi, M.: Phys. Plasmas 052302, 18 (2011a)

    Google Scholar 

  • Akbari-Moghanjoughi, M.: Phys. Plasmas 032103, 18 (2011b)

    Google Scholar 

  • Akbari-Moghanjoughi, M., Ahmadzadeh Khosrovshahi, N., Pramana: J. Phys. 1, 76 (2011)

    Google Scholar 

  • Amour, R., Tribeche, M.: Phys. Plasmas 063702, 17 (2010)

    Google Scholar 

  • Anowar, M.G.M., Mamun, A.A.: Phys. Lett. A 5896, 372 (2008)

    Google Scholar 

  • Berezhiani, V.I., Mahajan, S.M.: Phys. Rev. Lett. 1110, 73 (1994)

    Google Scholar 

  • Berezhiani, V.I., Tsintsadze, L.N., Shukla, P.K.: J. Plasma Phys. 139, 48 (1992a)

    Google Scholar 

  • Berezhiani, V.I., Tsintsadze, L.N., Shukla, P.K.: Phys. Scr. T 55, 46 (1992b)

    Google Scholar 

  • Berezhiani, V.I., El-Ashry, M.Y., Mofiz, U.A.: Phys. Rev. 448, E50 (1994)

    Google Scholar 

  • Chatterjee, P., Ghosh, U., Roy, K., Muniandy, S.V., Wong, C.S., Sahu, B.: Phys. Plasmas 122314, 17 (2010)

    Google Scholar 

  • Davidson, R.C.: Methods in Nonlinear Plasma Theory. Academic Press, New York (1972)

    Google Scholar 

  • Dubinova, I.D., Dubinov, A.E.: Tech. Phys. Lett. 575, 32 (2006)

    Google Scholar 

  • Dumont, R.J., Phillips, C.K., Smithe, D.N.: Phys. Plasmas 042508, 12 (2005)

    Google Scholar 

  • El-Awady, E.I., Moslem, W.M.: Phys. Plasmas 082308, 18 (2011)

    Google Scholar 

  • Esfandyari-Kalejahi, A., Mehdipour, M., Akbari-Moghanjoughi, M.: Phys. Plasmas 052309, 16 (2009)

    Google Scholar 

  • Gougam, L.A., Tribeche, M.: Phys. Plasmas 062102, 18 (2011)

    Google Scholar 

  • Gunell, H., Skiff, F.: Phys. Plasmas 3550, 8 (2001)

    Google Scholar 

  • Ikezi, H., Taylor, R., Baker, D.: Phys. Rev. Lett. 11, 25 (1970)

    Google Scholar 

  • Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Jeffery, A., Kawahawa, T.: Asymptotic Method in Monlinear Wave Theory. Pitman, London (1982)

    Google Scholar 

  • Jung, Y.D.: Phys. Plasmas 1215, 10 (2003)

    Google Scholar 

  • Kohl, J.L., Strachan, L., Gardner, L.D.: Astrophys. J. 465, L141 (1996)

    Article  ADS  Google Scholar 

  • Lazar, M., Schlickeiser, R., Poedts, S., Tautz, R.C.: Mon. Not. R. Astron. Soc. Lett. 390, 168 (2008)

    Article  Google Scholar 

  • Leubner, M.P.: Phys. Plasmas 1308, 11 (2004)

    Google Scholar 

  • Leubner, M.P., Schupfer, N.: Nonlinear Process. Geophys. 75, 9 (2002)

    Google Scholar 

  • Liu, Z., Du, J.: Phys. Plasmas 123707, 16 (2009)

    Google Scholar 

  • Liu, Z., Liu, L., Du, J.: Phys. Plasmas 072111, 16 (2009)

    Google Scholar 

  • Liyan, L., Jiulin, D.: Phys. Lett. A 4821, 378 (1990)

    Google Scholar 

  • Magni, H.E., Roman, R., Barni, R., Riccardi, C., Pierre, Th., Guyomarc’h, D.: Phys. Rev. E 026403, 72 (2005)

    Google Scholar 

  • Mahmood, S., Akhtar, N.: Eur. Phys. J. D 217, 49 (2008)

    Google Scholar 

  • Mahmood, S., Saleem, H.: Phys. Plasmas 721, 9 (2002)

    Google Scholar 

  • Mahmood, S., Mushtaq, A., Saleem, H.: New J. Phys. 4680, 5 (2003)

    Google Scholar 

  • Mahmood, M.A., Mahmood, S., Reza, A.M., Saleem, H.: Chin. Phys. Lett. 632, 22 (2005)

    Google Scholar 

  • Mamun, A.A.: Phys. Plasmas 322, 5 (1998)

    Google Scholar 

  • Mamun, A.A.: Astrophys. Space Sci. 507, 260 (1999)

    Google Scholar 

  • Mamun, A.A., Alam, M.N., Azad, A.K.: Phys. Plasmas 1212, 5 (1998)

    Google Scholar 

  • Mamun, A.A., Shukla, P.K., Stenflo, L.: Phys. Plasmas 4, 9 (2002)

    MathSciNet  Google Scholar 

  • Mendis, D.A., Rosenberg, M.: Annu. Rev. Astron. Astrophys. 419, 32 (1994)

    Google Scholar 

  • Michel, F.C.: Rev. Mod. Phys. 1, 54 (1982)

    Google Scholar 

  • Michel, F.C.: Theory of Neutron Star Magnetosphere. Chicago University Press, Chicago (1991)

    Google Scholar 

  • Miller, H.R., Witta, P.J.: Active Galactic Nuclei. Springer, Berlin (1987)

    Google Scholar 

  • Milovanov, A.V., Zelenyi, L.M.: Nonlinear Process. Geophys. 211, 7 (2000)

    Google Scholar 

  • Misner, W., Throne, K.S., Wheeler, J.A.: Gravitation, p. 763. Freeman, San Francisco (1973)

    Google Scholar 

  • Mushtaq, A., Shah, H.A.: Phys. Plasmas 072306, 12 (2005)

    Google Scholar 

  • Na, S.C., Jung, Y.D.: Phys. Plasmas 024501, 15 (2008)

    Google Scholar 

  • Nejoh, Y.N.: Aust. J. Phys. 309, 50 (1997)

    Google Scholar 

  • Oikawa, M., Yajima, N.: J. Phys. Rev. Sco. Jpn. 1093, 37 (1973)

    Google Scholar 

  • Popel, S.I., Vladimirov, S.V., Shukla, P.K.: Phys. Plasmas 716, 2 (1995)

    Google Scholar 

  • Rees, M.J.: In: Gibbons, G.B., Hawking, S.W., Siklas, S. (eds.) The Very Early Universe. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  • Reynolds, C.S., Fabian, A.C., Celotti, A., Rees, M.J.: Mon. Not. R. Astron. Soc. Lett. 873, 283 (1996)

    Google Scholar 

  • Rizzato, F.B.: Plasma Phys. 289, 40 (1988)

    Google Scholar 

  • Rubab, N., Murtaza, G.: Phys. Scr. 178, 73 (2006)

    Google Scholar 

  • Sagdeev, R.Z.: In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4. Consultants Bureau, New York (1966)

    Google Scholar 

  • Shukla, P.K., Stenflo, L., Fedele, R.: Phys. Plasmas 310, 10 (2003)

    Google Scholar 

  • Silva, R. Jr., Plastinobv, A.R., Limaay, J.A.S.: Phys. Lett. A 401, 249 (1998)

    Google Scholar 

  • Surko, C.M., Murphy, T.: Phys. Fluids 1372, B2 (1990)

    Google Scholar 

  • Tandberg-Hansen, E., Emshie, A.G.: The Physics of Solar Flares. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  • Tiwari, R.S.: Phys. Lett. A 3461, 372 (2008)

    Google Scholar 

  • Tiwari, R.S., Kaushik, A., Mishra, M.K.: Phys. Lett. A 335, 365 (2007)

    Article  Google Scholar 

  • Tribeche, M., Djebarni, L., Amour, R.: Phys. Plasmas 042114, 17 (2010)

    Google Scholar 

  • Tsallis, C.: J. Stat. Phys. 472, 52 (1988)

    MathSciNet  Google Scholar 

  • Tsallis, C.: Braz. J. Phys. 1, 29 (1999)

    Google Scholar 

  • Vasyliunas, V.M.: J. Geophys. Res. 2839, 73 (1968). doi:10.1029/JA073i009p02839

    Google Scholar 

  • Vedenov, A.A., Velikhov, E.P., Sagdeev, R.Z.: Nucl. Fusion 82, 1 (1961) [in Russian]

    Google Scholar 

  • Washimi, H., Taniuti, T.: Phys. Rev. Lett. 996, 17 (1966)

    Google Scholar 

  • Yu, M., Shukla, P.K., Bajubarua, S.: Phys. Fluids 2146, 23 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akbari-Moghanjoughi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari-Moghanjoughi, M. Universal characteristics of ion-acoustic wave dynamics in magnetized plasmas with emphasis on Tsallis distribution. Astrophys Space Sci 337, 613–622 (2012). https://doi.org/10.1007/s10509-011-0876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-011-0876-6

Keywords

Navigation