Archives of Sexual Behavior

, Volume 46, Issue 2, pp 441–453 | Cite as

Frequency of Penile–Vaginal Intercourse is Associated with Verbal Recognition Performance in Adult Women

  • Larah MaunderEmail author
  • Dorothée Schoemaker
  • Jens C. Pruessner
Original Paper


Previous studies have identified a number of factors that contribute to improved cognitive function, and to memory function specifically, in cognitively normal individuals. One such factor, frequency of penile–vaginal intercourse (PVI), has been reported in a number of animal studies to be advantageous to memory for previously presented objects by increasing neurogenesis in the dentate gyrus of the hippocampus. However, studies investigating the potential benefits of frequent PVI on memory function in young women are to the best of our knowledge absent from the literature. The current study thus investigated whether the self-reported frequency of sexual intercourse was related to memory function in healthy female college students. To determine whether variation in PVI would be associated with memory performance, we asked 78 heterosexual women aged 18–29 years to complete a computerized memory paradigm consisting of abstract words and neutral faces. Results showed that frequency of PVI was positively associated with memory scores for abstract words, but not faces. Because memory for words depends to a large extent on the hippocampus, whereas memory for faces may rely to a greater extent on surrounding extra-hippocampal structures, our results appear to be specific for memory believed to rely on hippocampal function. This may suggest that neurogenesis in the hippocampus is higher in those women with a higher frequency of PVI, in line with previous animal research. Taken together, these results suggest that PVI may indeed have beneficial effects on memory function in healthy young women.


Penile–vaginal intercourse Memory Hippocampus Dentate gyrus 



We would like to thank Anjali Cera and Kira Riehm for their help in testing participants throughout the study.


This study was funded by a Natural Sciences and Engineering Research Council Discovery Grant (249996) to Jens C. Pruessner. Dorothee Schoemaker was supported by a FRQS doctoral stipend.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. Ågmo, A., & Berenfeld, R. (1990). Reinforcing properties of ejaculation in the male rat: Role of opioids and dopamine. Behavioral Neuroscience, 104, 177–182.CrossRefPubMedGoogle Scholar
  2. Báez-Mendoza, R., & Schultz, W. (2013). The role of the striatum in social behavior. Frontiers in Neuroscience. doi: 10.3389/fnins.2013.00233.PubMedPubMedCentralGoogle Scholar
  3. Becker, J. B., Rudick, C. N., & Jenkins, W. J. (2001). The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. Journal of Neuroscience, 21, 3236–3241.PubMedGoogle Scholar
  4. Bedard, A., Gravel, C., & Parent, A. (2006). Chemical characterization of newly generated neurons in the striatum of adult primates. Experimental Brain Research, 170, 501–512.CrossRefPubMedGoogle Scholar
  5. Berchtold, N. C., Castello, N., & Cotman, C. W. (2010). Exercise and time-dependent benefits to learning and memory. Neuroscience, 167, 588–597.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blanchflower, D. G., & Oswald, A. J. (2004). Money, sex and happiness: An empirical study. Scandinavian Journal of Economics, 106, 393–415.CrossRefGoogle Scholar
  7. Broadbent, N. J., Gaskin, S., Squire, L. R., & Clark, R. E. (2010). Object recognition memory and the rodent hippocampus. Learning & Memory, 17, 5–11.CrossRefGoogle Scholar
  8. Brody, S. (2006). Blood pressure reactivity to stress is better for people who recently had penile–vaginal intercourse than for people who had other or no sexual activity. Biological Psychology, 71, 214–222.CrossRefPubMedGoogle Scholar
  9. Brody, S. (2010). The relative health benefits of different sexual activities. Journal of Sexual Medicine, 7, 1336–1361.CrossRefPubMedGoogle Scholar
  10. Brody, S., & Costa, R. M. (2009). Satisfaction (sexual, life, relationship, and mental health) is associated directly with penile–vaginal intercourse, but inversely with other sexual behavior frequencies. Journal of Sexual Medicine, 6, 1947–1954.CrossRefPubMedGoogle Scholar
  11. Brody, S., & Krüger, T. H. (2006). The post-orgasmic prolactin increase following intercourse is greater than following masturbation and suggests greater satiety. Biological Psychology, 71, 312–315.CrossRefPubMedGoogle Scholar
  12. Bruel-Jungerman, E., Laroche, S., & Rampon, C. (2005). New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. European Journal of Neuroscience, 21, 513–521.CrossRefPubMedGoogle Scholar
  13. Burleson, M. H., Trevathan, W. R., & Todd, M. (2007). In the mood for love or vice versa? Exploring the relations among sexual activity, physical affection, affect, and stress in the daily lives of mid-aged women. Archives of Sexual Behavior, 36, 357–368.CrossRefPubMedGoogle Scholar
  14. Burt, D. B., Zembar, M. J., & Niederehe, G. (1995). Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychological Bulletin, 117, 285–305.CrossRefPubMedGoogle Scholar
  15. Carmichael, M. S., Humbert, R., Dixen, J., Palmisano, G., Greenleaf, W., & Davidson, J. M. (1987). Plasma oxytocin increases in the human sexual response. Journal of Clinical Endocrinology and Metabolism, 64, 27–31.CrossRefPubMedGoogle Scholar
  16. Carmichael, M. S., Warburton, V. L., Dixen, J., & Davidson, J. M. (1994). Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Archives of Sexual Behavior, 23, 59–79.CrossRefPubMedGoogle Scholar
  17. Carter, C. S. (1992). Oxytocin and sexual behavior. Neuroscience and Biobehavioral Reviews, 16, 131–144.CrossRefPubMedGoogle Scholar
  18. Clelland, C., Choi, M., Romberg, C., Clemenson, G., Fragniere, A., Tyers, P., … Gage, F. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325, 210–213.Google Scholar
  19. Costa, R. M., & Brody, S. (2007). Women’s relationship quality is associated with specifically penile–vaginal intercourse orgasm and frequency. Journal of Sex and Marital Therapy, 33, 319–327.CrossRefPubMedGoogle Scholar
  20. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.CrossRefPubMedGoogle Scholar
  21. Damsma, G., Pfaus, J. G., Wenkstern, D., Phillips, A. G., & Fibiger, H. C. (1992). Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: Comparison with novelty and locomotion. Behavioral Neuroscience, 106, 181–191.CrossRefPubMedGoogle Scholar
  22. Dayer, A. G., Cleaver, K. M., Abouantoun, T., & Cameron, H. A. (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. Journal of Cell Biology, 168, 415–427.CrossRefPubMedPubMedCentralGoogle Scholar
  23. del Rio, J. A., & Soriano, E. (1989). Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse. Developmental Brain Research, 49, 311–317.CrossRefPubMedGoogle Scholar
  24. Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11, 379–386.CrossRefPubMedGoogle Scholar
  25. Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., … Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030–1039.Google Scholar
  26. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.CrossRefPubMedGoogle Scholar
  27. Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., … Frisén, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156, 1072–1083.Google Scholar
  28. Fernández, G., Weyerts, H., Schrader-Bölsche, M., Tendolkar, I., Smid, H. G., Tempelmann, C., … Mangun, G. R. (1998). Successful verbal encoding into episodic memory engages the posterior hippocampus: A parametrically analyzed functional magnetic resonance imaging study. Journal of Neuroscience, 18, 1841–1847.Google Scholar
  29. Glasper, E. R., & Gould, E. (2013). Sexual experience restores age-related decline in adult neurogenesis and hippocampal function. Hippocampus, 23, 303–312.CrossRefPubMedGoogle Scholar
  30. Gordon, G., Burch, R. L., & Platek, S. M. (2002). Does semen have antidepressant properties? Archives of Sexual Behavior, 31, 289–293.CrossRefGoogle Scholar
  31. Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., & Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Molecular Psychiatry, 13, 717–728.CrossRefPubMedGoogle Scholar
  32. Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2, 260–265.CrossRefPubMedGoogle Scholar
  33. Greenwood, B. N., Foley, T. E., Le, T. V., Strong, P. V., Loughridge, A. B., Day, H. E., & Fleshner, M. (2011). Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behavioural Brain Research, 217, 354–362.CrossRefPubMedGoogle Scholar
  34. Hawken, P. A., Jorre, T. J. S., Rodger, J., Esmaili, T., Blache, D., & Martin, G. B. (2009). Rapid induction of cell proliferation in the adult female ungulate brain (Ovis aries) associated with activation of the reproductive axis by exposure to unfamiliar males. Biology of Reproduction, 80, 1146–1151.CrossRefPubMedGoogle Scholar
  35. Haxby, J. V., Ungerleider, L. G., Horwitz, B., Maisog, J. M., Rapoport, S. I., & Grady, C. L. (1996). Face encoding and recognition in the human brain. Proceedings of the National Academy of Sciences, 93, 922–927.CrossRefGoogle Scholar
  36. Heckers, S., Weiss, A. P., Alpert, N. M., & Schacter, D. L. (2002). Hippocampal and brain stem activation during word retrieval after repeated and semantic encoding. Cerebral Cortex, 12, 900–907.CrossRefPubMedGoogle Scholar
  37. Heiman, J. R., Long, J. S., Smith, S. N., Fisher, W. A., Sand, M. S., & Rosen, R. C. (2011). Sexual satisfaction and relationship happiness in midlife and older couples in five countries. Archives of Sexual Behavior, 40, 741–753.CrossRefPubMedGoogle Scholar
  38. Hurlbert, D. F., & Whittaker, K. E. (1991). The role of masturbation in marital and sexual satisfaction: A comparative study of female masturbators and nonmasturbators. Journal of Sex Education and Therapy, 17, 272–282.Google Scholar
  39. Jacobs, B., van Praag, H., & Gage, F. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5, 262–269.CrossRefPubMedGoogle Scholar
  40. Jessberger, S., Clark, R. E., Broadbent, N. J., Clemenson, G. D., Consiglio, A., Lie, D. C., … Gage, F. H. (2009). Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learning & Memory, 16, 147–154.Google Scholar
  41. Kashdan, T. B., Adams, L. M., Farmer, A. S., Ferssizidis, P., McKnight, P. E., & Nezlek, J. B. (2014). Sexual healing: Daily diary investigation of the benefits of intimate and pleasurable sexual activity in socially anxious adults. Archives of Sexual Behavior, 43, 1417–1429.CrossRefPubMedGoogle Scholar
  42. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proceedings of the National Academy of Sciences, 94, 10409–10414.CrossRefGoogle Scholar
  43. Kennedy, K. M., Hope, K., & Raz, N. (2009). Life span adult faces: Norms for age, familiarity, memorability, mood, and picture quality. Experimental Aging Research, 35, 268–275.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kim, J.-I., Lee, J. W., Lee, Y. A., Lee, D.-H., Han, N. S., Choi, Y.-K., … Han, J. S. (2013). Sexual activity counteracts the suppressive effects of chronic stress on adult hippocampal neurogenesis and recognition memory. Brain Research, 1538, 26–40.Google Scholar
  45. Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.PubMedGoogle Scholar
  46. Laumann, E. O., Paik, A., Glasser, D. B., Kang, J.-H., Wang, T., Levinson, B., … Gingell, C. (2006). A cross-national study of subjective sexual well-being among older women and men: Findings from the Global Study of Sexual Attitudes and Behaviors. Archives of Sexual Behavior, 35, 143–159.Google Scholar
  47. Leuner, B., Caponiti, J. M., & Gould, E. (2012). Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus, 22, 861–868.CrossRefPubMedGoogle Scholar
  48. Leuner, B., Glasper, E. R., & Gould, E. (2010). Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS ONE, 5(7), e11597.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Levin, R. J. (2007). Sexual activity, health and well-being—The beneficial roles of coitus and masturbation. Sexual and Relationship Therapy, 22, 135–148.CrossRefGoogle Scholar
  50. Lorrain, D. S., Matuszewich, L., Friedman, R. D., & Hull, E. M. (1997). Extracellular serotonin in the lateral hypothalamic area is increased during the postejaculatory interval and impairs copulation in male rats. Journal of Neuroscience, 17, 9361–9366.PubMedGoogle Scholar
  51. Lorrain, D. S., Riolo, J. V., Matuszewich, L., & Hull, E. M. (1999). Lateral hypothalamic serotonin inhibits nucleus accumbens dopamine: Implications for sexual satiety. Journal of Neuroscience, 19, 7648–7652.PubMedGoogle Scholar
  52. Mak, G. K., Enwere, E. K., Gregg, C., Pakarainen, T., Poutanen, M., Huhtaniemi, I., & Weiss, S. (2007). Male pheromone–stimulated neurogenesis in the adult female brain: Possible role in mating behavior. Nature Neuroscience, 10, 1003–1011.CrossRefPubMedGoogle Scholar
  53. Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.PubMedGoogle Scholar
  54. Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., … Enikolopov, G. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318, 980–985.Google Scholar
  55. Marlatt, M. W., Potter, M. C., Lucassen, P. J., & van Praag, H. (2012). Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6 J mice. Developmental Neurobiology, 72, 943–952.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Meijer, J. H., & Robbers, Y. (2014). Wheel running in the wild. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140210.CrossRefGoogle Scholar
  57. Mermelstein, P. G., & Becker, J. B. (1995). Increased extracellular dopamine in the nucleus accumbens and striatum of the female rat during paced copulatory behavior. Behavioral Neuroscience, 109, 354–365.CrossRefPubMedGoogle Scholar
  58. Ming, G.-L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70, 687–702.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mirescu, C., & Gould, E. (2006). Stress and adult neurogenesis. Hippocampus, 16, 233–238.CrossRefPubMedGoogle Scholar
  60. Moncho-Bogani, J., Martinez-Garcia, F., Novejarque, A., & Lanuza, E. (2005). Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. European Journal of Neuroscience, 21, 2186–2198.CrossRefPubMedGoogle Scholar
  61. Moraska, A., Deak, T., Spencer, R. L., Roth, D., & Fleshner, M. (2000). Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. American Journal of Physiology, 279, R1321–R1329.PubMedGoogle Scholar
  62. Nakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., … McBain, C. J. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149, 188–201.Google Scholar
  63. Nestor, A., Plaut, D. C., & Behrmann, M. (2011). Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proceedings of the National Academy of Sciences, 108, 9998–10003.CrossRefGoogle Scholar
  64. Ormerod, B., & Galea, L. (2001). Reproductive status influences cell proliferation and cell survival in the dentate gyrus of adult female meadow voles: A possible regulatory role for estradiol. Neuroscience, 102, 369–379.CrossRefPubMedGoogle Scholar
  65. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76, 1–25.CrossRefGoogle Scholar
  66. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., … Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104, 5638–5643.Google Scholar
  67. Pfaus, J. G. (2009). Pathways of sexual desire. Journal of Sexual Medicine, 6, 1506–1533.CrossRefPubMedGoogle Scholar
  68. Pfaus, J. G., Damsma, G., Wenkstern, D., & Fibiger, H. (1995). Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Research, 693, 21–30.CrossRefPubMedGoogle Scholar
  69. Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’’academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138, 353–387.CrossRefPubMedGoogle Scholar
  70. Rossion, B., Caldara, R., Seghier, M., Schuller, A. M., Lazeyras, F., & Mayer, E. (2003). A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain, 126, 2381–2395.CrossRefPubMedGoogle Scholar
  71. Rossion, B., Hanseeuw, B., & Dricot, L. (2012). Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis. Brain and Cognition, 79, 138–157.CrossRefPubMedGoogle Scholar
  72. Rowland, D. L. (2006). Neurobiology of sexual response in men and women. CNS Spectrums, 11(S9), 6–12.CrossRefPubMedGoogle Scholar
  73. Rubin, Z. (1970). Measurement of romantic love. Journal of Personality and Social Psychology, 16, 265–273.CrossRefPubMedGoogle Scholar
  74. Sahay, A., Scobie, K. N., Hill, A. S., O’’arroll, C. M., Kheirbek, M. A., Burghardt, N. S., … Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472, 466–470.Google Scholar
  75. Shulman, J. L., & Horne, S. G. (2003). The use of self-pleasure: Masturbation and body image among African American and European American women. Psychology of Women Quarterly, 27, 262–269.CrossRefGoogle Scholar
  76. Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., … Buchholz, B. A. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153, 1219–1227.Google Scholar
  77. Spencer, J. P. (2010). The impact of fruit flavonoids on memory and cognition. British Journal of Nutrition, 104(S3), S40–S47.CrossRefPubMedGoogle Scholar
  78. Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Takahashi, T., Zhu, Y., Hata, T., Shimizu-Okabe, C., Suzuki, K., & Nakahara, D. (2009). Intracranial self-stimulation enhances neurogenesis in hippocampus of adult mice and rats. Neuroscience, 158, 402–411.CrossRefPubMedGoogle Scholar
  80. Takamura, N., Nakagawa, S., Masuda, T., Boku, S., Kato, A., Song, N., … Koyama, T. (2014). The effect of dopamine on adult hippocampal neurogenesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 50, 116–124.Google Scholar
  81. van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.CrossRefPubMedGoogle Scholar
  82. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.CrossRefPubMedGoogle Scholar
  83. van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–8685.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wadsworth, T. (2014). Sex and the pursuit of happiness: How other people’s sex lives are related to our sense of well-being. Social Indicators Research, 116, 115–135.CrossRefGoogle Scholar
  85. Wakerley, J., Clarke, G., & Summerlee, A. (2006). Milk ejection and its control. In E. Knobil & J. Neill (Eds.), The physiology of reproduction (3rd ed., Vol. 2, pp. 3129–3190). New York: Raven Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Neuroscience, McGill Centre for Studies in AgingMcGill UniversityMontrealCanada
  2. 2.Department of Psychology, McGill Centre for Studies in AgingMcGill UniversityMontrealCanada
  3. 3.Departments of Psychology, Psychiatry, Neurology and Neurosurgery, McGill Centre for Studies in AgingMcGill UniversityMontrealCanada

Personalised recommendations