Skip to main content
Log in

Exploring the anesthetic potential of propofol in Ictalurus punctatus (Rafinesque, 1818)

  • Research
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate propofol as an anesthetic and its effects on physiology and histology in Ictalurus punctatus. To determine the ideal concentration, juvenile of I. punctatus (96.60 ± 27.70 g) were used, submitted to different concentrations of the anesthetic: 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 6.0 mg L−1. The concentration evaluated as ideal was 2.5 mg L−1. To evaluate the physiological and histological effects of propofol exposure, juvenile of I. punctatus (99.71 ± 26.38 g) were sampled immediately (T0) and 30 min after anesthesia (T30) with 2.5 mg L−1, had blood, liver, and gill samples collected. The exposure of the animals to propofol in both treatments (T0 and T30) caused increases in plasma glucose and lactate levels (p < 0.05) but prevented an increase in cortisol (p > 0.05). The histological study showed mild to moderate changes in the gills (congestion in the lamellar vessels and central vein and epithelial elevation) and moderate and severe changes in the liver (congestion and degeneration). This study concludes that the concentration of 2.5 mg L−1 of propofol provides safe anesthesia for I. punctatus and prevents increased plasma cortisol levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Ananias IDMC, de Melo CL, Costa DC, Ferreira AL, Martins EDFF, Takata R, Luz RK (2022) Menthol as anesthetic for juvenile Lophiosilurus alexandri: induction and recovery time, ventilatory frequency, hematology and blood biochemistry. Aquaculture 546:737373. https://doi.org/10.1016/j.aquaculture.2021.737373

    Article  CAS  Google Scholar 

  • Balamurugan J, Kumar TTA, Prakash S, Meenakumari B, Balasundaram C, Harikrishnan R (2016) Clove extract: a potential source for stress free transport of fish. Aquaculture 454:171–175

    Article  CAS  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  PubMed  Google Scholar 

  • Brandão FR, Farias CFS, de Melo Souza DC, de Oliveira MIB, de Matos LV, Majolo C, Oliveira MR, Chaves FCM, O’Sullivan FLA, Chagas EC (2021) Anesthetic potential of the essential oils of Aloysia triphylla, Lippia sidoides and Mentha piperita for Colossoma macropomum. Aquaculture 534:736275

    Article  Google Scholar 

  • Castro JS, França CL, Fernandes JFF, Silva JS, Carvalho-Neta RNF, Teixeira EG (2018) Biomarcadores histológicos em brânquias de Sciades herzbergii (Siluriformes, Ariidae) capturados no Complexo Estuarino de São Marcos, Maranhão. Arquivo Bras Med Vet Zootec 70(2):410–418

    Article  Google Scholar 

  • da Silva E, Aldegunde M, da Silva DF, Lopes C, Bertoldi FC, Weber RA (2020) Assessment of induction and recovery times of anaesthesia in Astyanax bimaculatus using 2-phenoxyethanol and the essential oils of Melaleuca alternifolia and Ocimum gratissimum. Aquac Res 51(2):577–583. https://doi.org/10.1111/are.14404

    Article  CAS  Google Scholar 

  • da Silva E, Deschamps GT, Matter FDL, Bertoldi FC, Aldegunde M, da Silva DF, Lopes C, Jatobá A, Weber RA (2021) The anaesthetic efficacy of Eucalyptus globulus essential oil on silver catfish (Rhamdia quelen). Aquac Res 52(11):5190–5197. https://doi.org/10.1111/are.15388

    Article  CAS  Google Scholar 

  • da Silva E, de Moraes AV, Pereira MDO, Bittencourt M, Weber RA, Jatobá A (2022) Autochthonous and allochthonous dietary probiotics mitigate acute stress in Astyanax bimaculatus during transport. Aquac Res 53(8):3253–3256. https://doi.org/10.1111/are.15822

    Article  CAS  Google Scholar 

  • da Silva E, Deschamps GT, Matter FDL, Aldegunde M, Silva DF, Lopes C, Jatobá A, Weber RA (2023) 2-Phenoxyethanol as an anesthetic for Rhamdia quelen: a comparison with eugenol. Pan-Am J Aquat Sci 18(1):41–50. https://doi.org/10.54451/PanamJAS.18.1.41

    Article  Google Scholar 

  • de Moraes AV, Owatari MS, da Silva E, de Oliveira Pereira M, Piola M, Ramos C, Farias DR, Schleder DD, Jesus GFA, Jatobá A (2022) Effects of microencapsulated probiotics-supplemented diet on growth, non-specific immunity, intestinal health and resistance of juvenile Nile tilapia challenged with Aeromonas hydrophila. Anim Feed Sci Technol 287:115286. https://doi.org/10.1016/j.anifeedsci.2022.115286

    Article  CAS  Google Scholar 

  • de Oliveira CPB, da Paixao Lemos CH, Felix A, de Souza SA, Albinati ACL, Lima AO, Copatti CE (2019) Use of eugenol for the anaesthesia and transportation of freshwater angelfish (Pterophyllum scalare). Aquaculture 513:734409

    Article  Google Scholar 

  • Dongdong M, Siying L, Jinge Z, Zhijie L, Xiaobing L, Zheng H, Chushu J, Xin L, Wenjun S, Guangguo Y (2024) Developmental neurotoxicity of anesthetic etomidate on zebrafish larvae. Asian J Ecotoxicol 19(1):1–40. https://doi.org/10.7524/AJE.1673-5897.20230928002

  • Duke T (1995) A new intravenous anesthetic agent: propofol. Can Vet J 36:181–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson H, Bjerkas E, Evensen O (2006) Systemic pathology of fish: a text and atlas of normal tissue responses in teleosts, and their responses in disease. London: Scotian Press 17:191–214

    Google Scholar 

  • Ferreira AL, Bonifácio CT, e Silva WDS, Takata R, Favero GC, Luz RK (2021) Anesthesia with eugenol and menthol for Piaractus brachypomus (Cuvier, 1818): induction and recovery times, ventilation frequency and hematological and biochemical responses. Aquaculture 544:737076. https://doi.org/10.1016/j.aquaculture.2021.737076

    Article  CAS  Google Scholar 

  • Garcia-Santos S, Monteiro SM, Carrola J, Fontainhas-Fernandes A (2007) Alterações histológicas em brânquias de tilápia nilótica (Oreochromis niloticus) causadas pelo cádmio. Arquivo Bras Med Vet Zootec 59(2):376–381

    Article  CAS  Google Scholar 

  • GholipourKanani H, Ahadizadeh S (2013) Use of propofol as an anesthetic and its efficacy on some hematological values of ornamental fish Carassius auratus. SpringerPlus 2(76):1–5

    Google Scholar 

  • Giari L, Manera M, Simoni E, Dezfuli B (2007) Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere 67:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Gressler LT, Parodi TV, Riffel APK, Dacosta ST, Baldisserotto B (2012) Immersion anaesthesia with tricaine metanesulphonate or propofol on different sizes and strains of silver catfish Rhamdia quelen. J Fish Biol 81:1436–1445

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Penrice WS (1993) The influence of high oral doses of mercuric chloride on organ toxicant concentrations and histopathology in rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol 106c(3):717–724

    CAS  Google Scholar 

  • Heath AG (1987) Water pollution and fish phisiology. CRC Press, Boca Raton, FL, p 245p

    Google Scholar 

  • Hinton DE, Baumann PC, Gardner GR, Hawkins WE, Hendricks JD, Murchelano RA, Okihiro MS (1992) Histopathologic biomarkers. In: Huggett, R. J., Kimerli, R. A., Mehrle, P. M., & Bergman, H. L. Biomarkers biochemical, physiological and histological markers of anthropogenic stress. Boca Raton: Lewis Pubishers. cap. 4, 155–196

  • Hinton DE, Laurén DJ (1990) Integrative histopathological approaches to detecting effects of environmental stressors on fishes. Am Fish Soc Symp 8:51–66

    Google Scholar 

  • Hoseini SM, Taheri Mirghaed A, Pagheh E, Hoseinifar SH, Van Doan H (2022) Anesthesia of rainbow trout with citronellal: efficacy and biochemical effects. J Exp Zool A: Ecol Integr Physiol 337(3):227–237

    Article  CAS  PubMed  Google Scholar 

  • Hur JW, Gil HW, Choi SH, Jung HJ, Kang YJ (2019) Anesthetic efficacy of clove oil and the associated physiological responses in olive flounder (Paralichthys olivaceus). Aquac Rep 15:100227

    Article  Google Scholar 

  • Inoue LAKA, Moraes G, Iwama GK, Afonso LOB (2005) Efeito do óleo de cravo na resposta de estresse do matrinxã (Brycon cephalus) submetido ao transporte. Acta Amazon 35:289–295

    Article  Google Scholar 

  • Iversen M, Finstad B, McKinley RS, Eliassen RA (2003) The efficacy of metomidate, clove oil, Aqui-S™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture 221(1–4):549–566

    Article  CAS  Google Scholar 

  • Iwama GK, Mcgeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acidbase balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool 67:2065–2073

    Article  CAS  Google Scholar 

  • Jackson DC (2004) Natural history and fisheries. In: Tucker CS, Hargreaves JA (eds) Biology and culture of channel catfish. Elsevier, Amsterdam, pp 15–35

    Chapter  Google Scholar 

  • Jatobá A, Jesus GF (2022) Autochthonous and allochthonous lactic acid bacteria: action on the hematological and intestinal microbiota for two species of Astyanax genus. An Acad Bras Ciências 94(4):1–6. https://doi.org/10.1590/0001-3765202220201611

  • Jiraungkoorskula W, Upathama ES, Kruatrachuea M, Sahaphongc S, Vichasri-Gramsa S, Pokethitiyooka P (2002) Histopathological effects of roundup, a glyphosate herbicide, on Nile tilapia (Oreochromis niloticus). Sci Asia 28:l

    Google Scholar 

  • Landis WG, Yu, M-H (1995) Introduction to environmental toxicology impacts of chemicals upon ecological systems. Boca Ration, Florida

  • Lehmann NB, Owatari MS, Furtado WE, Cardoso L, Tancredo KR, Jesus GFA, Lopes GR, Martins ML (2019) Parasitological and histopathological diagnosis of a non-native fish (Oreochromis sp.) with a noticeable presence in a natural Brazilian river environment. J Parasit Dis [S. L.] 44(1):201–212

    Article  PubMed  Google Scholar 

  • Mallat J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630

    Article  Google Scholar 

  • Marking LL, Meyer FP (1985) Are better anesthetics needed in fisheries? Fisheries 10:2–5

    Article  Google Scholar 

  • Mazon AF, Monteiro EAS, Pinheiro GHD, Fernandes MN (2002) Gill cellular changes induced by copper exposure in the south American tropical freshwater fish Prochilodus scrofa. Environ Res Sect A 88:52–63

    Article  CAS  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TM (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Mortazevi Zadeh SA, Peyghan R, Yooneszadeh Feshalami M, Sharifiyan M (2013) Determine of appropriate concentration of propofol anesthetic drug in Benni (Barbus sharpeyi). Iran Sci Fish J 21(2):133–142

    Google Scholar 

  • Oda Y, Hamaoka N, Hiroi T, Imaoka S, Hase I, Tanaka K, Funae Y, Ishizaki T, Asada A (2001) Involvement of human liver cytochrome P4502B6in the metabolism of propofol. Br J Clin Pharmacol 51(3):281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda A, Bailey KM, Lewbart GA, Griffith EH, Posner LP (2014) Physiologic and biochemical assessments of koi (Cyprinus carpio) following immersion in propofol. J Am Vet Med Assoc 245(11):1286–1291

  • Oliveira FA, Oleskovicz N, Moraes AN (2007) Anestesia total intravenosa em cães e gatos com propofol e suas associações. Rev Ciênc Agroveterinárias 6(2):170–178

    Google Scholar 

  • Pacheco M, Santos MA (2002) Biotranformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotoxicol Environ Saf 53:331–347

    Article  CAS  PubMed  Google Scholar 

  • Priborsky J, Velisek J (2018) A review of three commonly used fish anesthetics. Rev Fish Sci Aquac 26(4):417–442. https://doi.org/10.1080/23308249.2018.1442812

    Article  Google Scholar 

  • Rand GM, Petrocelli SR (1985) Fundamentals of aquatic toxicology: methods and applications. FMC Corp, Princeton

  • Rivera ALL, Bracamonte GMP, Rincón AMS, Báez HHG, González HR, Alfaro IOM (2015) El bagre de canal (Ictalurus punctatus Rafinesque, 1818): estado actual y problemática en México. Lat Am J Aquat Res 43(3):424–434

    Google Scholar 

  • Rolls G (2012) Fixation and fixatives-popular fixative solutions. Leica biosystems, Wetzlar

  • Rorig MCL, Garcez JR, Baumgartner LA, Matos MR, Wilmsen M, Cardoso SU, Silveira SD, Bombardelli RA (2023) Cirurgical removal of periocular neoformation in Peixe-Kinguiu (Carassius auratus) submitted to anesthesia with propofol in combination with morfina – case report. Arquivo Bras Med Vet Zootec 75(3):444–450

    Article  Google Scholar 

  • Roubach R, Gomes LDC (2001) O uso de anestésicos durante o manejo de peixes. Panor Aquicultura 11(66):37–40

    Google Scholar 

  • Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recover 6:75–86

    Article  CAS  Google Scholar 

  • Simonato JD, Guedes CLB, Martinez CBR (2007) Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol Envir Saf 69:112–120

    Article  Google Scholar 

  • Southworth BE, Stone N, Engle CR (2006) Production characteristics, water quality, and costs of producing channel catfish Ictalurus punctatus at different stocking densities in single-batch production. J World Aquacult Soc 37(1):21–31. https://doi.org/10.1111/j.1749-7345.2006.00003.x

    Article  Google Scholar 

  • Stevens A, Lowe J (1995) Histologia. Manole Ltda, São Paulo

  • Takashima F, Hibiya T (1995) An atlas of fish histology normal and pathological features, 2nd edn. Gustav Fischer Verlag, Kodansha

    Google Scholar 

  • Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S (2003) Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 121(3):307–320

    Article  CAS  PubMed  Google Scholar 

  • Trapani GM, Altomare C, Sanna E, Biggio G, Liso G (2000) Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem 7(2):249–271

    Article  CAS  PubMed  Google Scholar 

  • Trushenski JT, Bowser JC, Bowker JD, Schwarz MH (2012) Chemical and electrical approaches to sedation of cobia: induction, recovery, and physiological responses to sedation. Mar Coast Fish 4(1):639–650

    Article  Google Scholar 

  • Vilvert MP, da Silva E, Rodhermel JCB, Stockhausen L, Andrade JIA, Jatobá A (in press) Influence of taurine on the zootechnical performance and health parameters of juvenile Nile tilapia in a recirculating aquaculture system. An Acad Bras Ciências x(x):x-x

  • Weber RA, Peleteiro JB, Garcia Martin LO, Aldegunde M (2009) The efficacy of 2-phenoxyethanol, metomidate, clove oil and MS-222 as anaesthetic agents in the Senegalese sole (Solea senegalensis Kaup 1858). Aquaculture 288(1–2):147–150

    Article  CAS  Google Scholar 

  • Wellborn TL (1988) Channel Catfish: life history and biology. SRAC Publication, College Station

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    Article  CAS  PubMed  Google Scholar 

  • Winkaler EU, Silva AG, Chaicoski HG, Martinez CBR (2001) Biomarcadores histológicos e fisiológicos para o monitoramento da saúde de peixes de ribeirões de Londrina, Estado do Paraná. Acta Sci Maringá 23(2):507–514

    Google Scholar 

  • Wolf JC, Baumgartner WA, Blazer VS, Camus AC, Engelhardt JA, Fournie JW, Frasca S Jr, Groman DB, Kent ML, Khoo LH, Law JM, Lombardini ED, Ruehl-Fehlert C, Segner HE, Smith SA, Spitsbergen JM, Weber K, Wolfe MJ (2015) Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: a guide for investigators, authors, reviewers, and readers. Toxicol Pathol 45:297–325. https://doi.org/10.1177/0192623314540229

    Article  Google Scholar 

  • Yigit NO, Kocaayan H (2023) Efficiency of thyme (Origanum onites) and coriander (Coriandrum sativum) essential oils on anesthesia and histopathology of rainbow trout (Oncorhynchus mykiss). Aquaculture 562:738813

    Article  CAS  Google Scholar 

  • Yousefi M, Hoseini SM, Aydın B, Mirghaed AT, Kulikov EV, Drukovsky SG, Seleznev SB, Rudenko PA, Hoseinifar SH, Van Doan H (2022) Anesthetic efficacy and hemato-biochemical effects of thymol on juvenile Nile tilapia, Oreochromis niloticus. Aquaculture 547:737540

    Article  CAS  Google Scholar 

  • Zahl IH, Samuelsen O (2012) Anaesthesia of farmed fish: implications for welfare. Fish Physiol Biochem 38(201):201–208

    Article  CAS  PubMed  Google Scholar 

  • Zahran E, Risha E, Rizk A (2021) Comparison propofol and eugenol anesthetics efficacy and effects on general health in Nile Tilapia. Aquaculture 534:736251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.L.M: Conceptualization, Methodology, Validation, Resources, Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review &; Editing, Visualization, Project administration;

E.S; G.T.D and J.P.T: Conceptualization, Methodology, Validation, Investigation, Resources, Data Curation, Writing—Review &; Editing, Visualization;

F.T: Conceptualization, Methodology, Validation, Investigation, Resources, Data Curation, Visualization;

C.E.N.M: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing—Review &; Editing, Visualization, Supervision;

R.A.W: Conceptualization, Methodology, Validation, Investigation, Resources, Data Curation, Writing—Review &; Editing, Visualization, Supervision, Project administration.

Corresponding author

Correspondence to Eduardo da Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Brian Austin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matter, F.d.L., da Silva, E., Deschamps, G.T. et al. Exploring the anesthetic potential of propofol in Ictalurus punctatus (Rafinesque, 1818). Aquacult Int (2024). https://doi.org/10.1007/s10499-024-01493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10499-024-01493-5

Keywords

Navigation