Skip to main content

Advertisement

Log in

Anaesthesia of farmed fish: implications for welfare

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

During their life cycle as farmed animals, there are several situations in which fish are subjected to handling and confinement. Netting, weighing, sorting, vaccination, transport and, at the end, slaughter are frequent events under farming conditions. As research subjects, fish may also undergo surgical procedures that range from tagging, sampling and small incisions to invasive procedures. In these situations, treatment with anaesthetic agents may be necessary in order to ensure the welfare of the fish. The main objective of this paper is to review our knowledge of the effects of anaesthetic agents in farmed fish and their possible implications for welfare. As wide variations in response to anaesthesia have been observed both between and within species, special attention has been paid to the importance of secondary factors such as body weight, water temperature and acute stress. In this review, we have limited ourselves to the anaesthetic agents such as benzocaine, metacaine (MS-222), metomidate hydrochloride, isoeugenol, 2-phenoxyethanol and quinaldine. Anaesthetic protocols of fish usually refer to one single agent, whereas protocols of human and veterinary medicine cover combinations of several drugs, each contributing to the effects needed in the anaesthesia. As stress prior to anaesthesia may result in abnormal reactions, pre-anaesthetic sedation is regularly used in order to reduce or avoid stress and is an integral part of the veterinary protocols of higher vertebrates. Furthermore, the anaesthetic agents that are used in order to obtain general anaesthesia are combined with analgesic agents that target nociception. The increased use of such combinations in fish is therefore included as a special section. Anaesthetic agents are widely used to avoid stress during various farming procedures. While several studies report that anaesthetics are effective in reducing the stress associated with confinement and handling, there are indications that anaesthesia may in itself induce a stress response, measured by elevated levels of cortisol. MS-222 has been reported to elicit high cortisol release rates immediately following exposure, while benzocaine causes a bimodal response. Metomidate has an inhibitory effect on cortisol in fish and seems to induce the lowest release of cortisol of the agents reported in the literature. Compared to what is observed following severe stressors such as handling and confinement, the amount of cortisol released in response to anaesthesia appears to be low but may represent an extra load under otherwise stressful circumstances. Furthermore, anaesthetics may cause secondary adverse reactions such as acidosis and osmotic stress due to respiratory arrest and insufficient exchange of gas and ions between the blood and the water. All in all, anaesthetics may reduce stress and thereby improve welfare but can also have unwanted side effects that reduce the welfare of the fish and should therefore always be used with caution. Finally, on the basis of the data reported in the literature and our own experience, we recommend that anaesthetic protocols should always be tested on a few fish under prevailing conditions in order to ensure an adequate depth of anaesthesia. This recommendation applies whether a single agent or a combination of agents is used, although it appears that protocols comprising combinations of agents provide wider safety margins. The analgesic effects of currently used agents, in spite of their proven local effects, are currently being debated as the agents are administrated to fish via inhalation rather than locally at the target site. We therefore recommend that all protocols of procedures requiring general anaesthesia should be complemented by administration of agents with analgesic effect at the site of tissue trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman PA, Morgan JD, Iwama GK (2005) Anesthetics. CCAC guidelines on: the care and use of fish in research, teaching and testing. http://www.ccac.ca/en/CCAC_Programs/Guidelines_Policies/GDLINES/Fish/Fish Anesthetics—ENG.pdf. Canadian Council on Animal Care, Ottawa CA (last accessed December 2010)

  • Anon (2007) Pharmaceutical use in Norwegian fish farming in 2001–2007, Wholesale-based drug statistics. Norwegian Institute of Public Health

  • Aoshima H, Hamamoto K (1999) Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid. Biosci Biotechnol Biochem 63:743–748

    Article  PubMed  CAS  Google Scholar 

  • Ashton D, Wauquier A (1985) Modulation of a GABA-ergic inhibitory circuit in the in vitro hippocampus by etomidate isomers. Anesth Analg 64:975–980

    Article  PubMed  CAS  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrat Comparat Biol 42:517–525

    Article  CAS  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Barton BA, Peter RE (1982) Plasma cortisol stress response in fingerling rainbow trout, Salmo gairdneri Richardson, to various transport conditions, anaesthesia, and cold shock. J Fish Biol 20:39–51

    Article  Google Scholar 

  • Barton BA, Schreck CB (1987) Metabolic cost of acute physical stress in juvenile steelhead. Trans Am Fish Soc 116:257–263

    Article  Google Scholar 

  • Bell G (1987) An outline of anesthetics and anesthesia for salmonids: a guide for fish culturists in British Columbia. Canadian technical report of fisheries aquatic sciences no. 1534

  • Berge RK, Slinde E, Farstad M (1980) Discontinuities in Arrhenius plots due to formation of mixed micelles and change in enzyme substrate availability. FEBS Lett 109:194–196

    Article  PubMed  CAS  Google Scholar 

  • Boas RA, Covino BG, Shahnarian A (1982) Analgesic responses to i.v. lignocaine. Br J Anaesth 54:501–505

    Article  PubMed  CAS  Google Scholar 

  • Bourne PK (1984) The use of MS-222 (tricaine methanesulphonate) as an anaesthetic for routine blood sampling in three species of marine teleosts. Aquaculture 36:313–321

    Article  CAS  Google Scholar 

  • Brodin P, Røed A (1984) Effects of eugenol on rat phrenic nerve and phrenic nerve-diaphragm preparations. Arc Oral Biol 29:611–615

    Article  CAS  Google Scholar 

  • Brown EAB, Franklin JE, Pratt E, Trams EG (1972) Contributions to the pharmacology of quinaldine (uptake and distribution in the shark and comparative studies). Comp Biochem Physiol 42A:223–231

    Article  Google Scholar 

  • Burka JF, Hammell KL, Horsberg TE, Johnson GR, Rainnie DJ, Speare DJ (1997) Drugs in salmonid aquaculture—a review. J Vet Pharmacol Ther 20:333–349

    Article  PubMed  CAS  Google Scholar 

  • Ching KY, Baum CR (2009) Newer agents for rapid sequence intubation: etomidate and rocuronium. Pediatr Emerg Care 25:200–207

    Article  PubMed  Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Cossins AR (1983) Adaptive responses of fish membranes to altered environmental temperature. Biochem Soc Trans 11:332–333

    PubMed  CAS  Google Scholar 

  • Cuesta A, Meseguer J, Esteban MA (2004) Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Vet Immunol Immunopathol 101:203–210

    Article  PubMed  CAS  Google Scholar 

  • Darrouj J, Karma L, Arora R (2009) Cardiovascular manifestations of sedatives and analgesics in the critical care unit. Am J Therapeut 16:339–353

    Article  Google Scholar 

  • Davidson GW, Davie PS, Young G, Fowler RT (2000) Physiological responses of rainbow trout Oncorhynchus mykiss to crowding and anesthesia with AQUI-S (TM). J World Aqua Soc 31:105–114

    Article  Google Scholar 

  • Davis KB, Griffin BR (2004) Physiological responses of hybrid striped bass under sedation by several anesthetics. Aquaculture 233:531–548

    Article  CAS  Google Scholar 

  • Davis LE, Schreck CB (1997) The energetic response to handling stress in juvenile coho salmon. Trans Am Fish Soc 126:248–258

    Article  Google Scholar 

  • Davis KB, Parker NC, Suttle MA (1982) Plasma corticosteroids and chlorides in striped bass exposed to tricaine methanesulfonate, quinaldine, etomidate, and salt. Progress Fish Cultur 44:205–207

    Article  CAS  Google Scholar 

  • Dawson VK, Gilderhus PA (1979) Ethyl-p-aminobenzoate (Benzocaine): efficacy as an anesthetic for five species of freshwater fish, vol 87. Investigations in Fish Control, United States Department of the Interior

  • Dawson VK, Marking LL (1973) Toxicity of mixtures of quinaldine sulfate and MS-222 to fish, vol 53. Investigations in Fish Control, United States Department of the Interior

  • Dunlop R, Laming P (2005) Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorhynchus mykiss). J Pain 6:561–568

    Article  PubMed  Google Scholar 

  • Eliason EJ, Kiessling A, Karlsson A, Djordjevic B, Farrell AP (2007) Validation of the hepatic portal vein cannulation technique using Atlantic salmon Salmo salar L. J Fish Biol 71:290–297

    Article  Google Scholar 

  • Falk J, Zed PJ (2004) Etomidate for procedural sedation in the emergency department. Ann Pharmacother 38:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP (1984) A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Can J Zool 62:523–536

    Article  Google Scholar 

  • Ferreira JT, Schoonbee HJ, Smit GL (1984) The uptake of the anesthetic benzocaine hydrochloride by the gills and the skin of three freshwater fish species. J Fish Biol 25:35–41

    Article  CAS  Google Scholar 

  • Fevolden SE, Røed KH, Fjalestad KT, Stien J (1999) Post-stress levels of lysozyme and cortisol in adult rainbow trout: heritabilities and genetic correlations. J Fish Biol 54:900–910

    Article  CAS  Google Scholar 

  • Frazier DT, Narahashi T (1975) Tricaine (MS-222): Effects on ionic conductances of squid axon membranes. Eur J Pharmacol 33:313–317

    Article  PubMed  CAS  Google Scholar 

  • Fredricks KT, Gingerich WH, Fater DC (1993) Comparative cardiovascular effects of four fishery anesthetics in spinally transected rainbow trout, Oncorhynchus mykiss. Compar Biochem Physiol C Pharmacol Toxicol Endocrinol 104:477–483

    Article  Google Scholar 

  • Froese R, Pauly D (2011) FishBase, http://www.fishbase.org, version 10/2011

  • Gilderhus PA, Marking LL (1987) Comparative efficacy of 16 anesthetic chemicals on rainbow trout. North Am J Fish Manag 7:288–292

    Article  Google Scholar 

  • Gilderhus PA, Berger BL, Sills JB, Harman PD (1973) The efficacy of quinaldine sulfate: MS-222 mixtures for the anesthetization of freshwater fish, vol 54. Investigations in Fish Control, United States Department of the Interior

  • Gilderhus PA, Lemm CA, Woods LC (1991) Benzocaine as an anesthetic for striped bass. Progress Fish Cultur 53:105–107

    Article  Google Scholar 

  • Gingerich WH, Drottar KR (1989) Plasma-catecholamine concentrations in rainbow trout (Salmo gairdneri) at rest and after anesthesia and surgery. Gen Comp Endocrinol 73:390–397

    Article  PubMed  CAS  Google Scholar 

  • Graham MS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62:38–61

    Google Scholar 

  • Grasshoff C, Drexler B, Rudolph U, Antkowiak B (2006) Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des 12:3665–3679

    Article  PubMed  CAS  Google Scholar 

  • Guenette SA, Uhland FC, Helie P, Beaudry F, Vachon P (2007) Pharmacokinetics of eugenol in rainbow trout (Oncorhynchus mykiss). Aquaculture 266:262–265

    Article  CAS  Google Scholar 

  • Haegerstam G (1979) Effect of i.v. administration of lignocaine and tetrodotoxin on sensory units in the tooth of the cat. Br J Anaesth 51:487–491

    Article  PubMed  CAS  Google Scholar 

  • Hall LW, Clarke KW, Trim CM (2001) Veterinary anaesthesia. W. B. Saunders, London

    Google Scholar 

  • Hansen MK, Nymoen U, Horsberg TE (2003) Pharmacokinetic and pharmacodynamic properties of metomidate in turbot (Scophthalmus maximus) and halibut (Hippoglossus hippoglossus). J Vet Pharmacol Ther 26:95–103

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Sata T (2007) The effects of the local anesthetics lidocaine and procaine on glycine and gamma-aminobutyric acid receptors expressed in xenopus oocytes. Anesth Analg 104:1434–1439

    Article  PubMed  CAS  Google Scholar 

  • Harms CA, Lewbart GA, Swanson CR, Kishimori JM, Boylan SM (2005) Behavioral and clinical pathology changes in koi carp (Cyprinus carpio) subjected to anesthesia and surgery with and without intra-operative analgesics. Compar Med 55:221–226

    CAS  Google Scholar 

  • Hayton WL, Szoke A, Kemmenoe BH, Vick AM (1996) Disposition of benzocaine in channel catfish. Aqua Toxicol 36:99–113

    Article  CAS  Google Scholar 

  • Hedrick MS, Winmill RE (2003) Excitatory and inhibitory effects of tricaine (MS-222) on fictive breathing in isolated bullfrog brain stem. Am J Physiol Regul Integrat Compar Physiol 284:R405–R412

    CAS  Google Scholar 

  • Hikasa Y, Takase K, Ogasawara T, Ogasawara S (1986) Anesthesia and recovery with tricaine methanesulfonate, eugenol and thiopental sodium in the carp, Cyprinus carpio. Jpn J Veterin Sci 48:341–351

    Article  CAS  Google Scholar 

  • Hill JV, Forster ME (2004) Cardiovascular responses of Chinook salmon (Oncorhynchus tshawytscha) during rapid anaesthetic induction and recovery. Compar Biochem Physiol C Toxicol Pharmacol 137:167–177

    Article  CAS  Google Scholar 

  • Hill JV, Davison W, Forster ME (2002) The effects of fish anaesthetics (MS222, metomidate and AQUI-S) on heart ventricle, the cardiac vagus and branchial vessels from Chinook salmon (Oncorhynchus tshawytscha). Fish Physiol Biochem 27:19–28

    Article  CAS  Google Scholar 

  • Holloway AC, Keene JL, Noakes DG, Moccia RD (2004) Effects of clove oil and MS-222 on blood hormone profiles in rainbow trout Oncorhynchus mykiss, Walbaum. Aquacult Res 35:1025–1030

    Article  CAS  Google Scholar 

  • Hoskonen P, Pirhonen J (2004) Temperature effects on anaesthesia with clove oil in six temperate-zone fishes. J Fish Biol 64:1136–1142

    Article  Google Scholar 

  • Houston AH, Woods RJ (1972) Blood concentrations of tricaine methane sulphonate in brook trout, Salvelinus fontinalis, during anesthetization, branchial irrigation, and recovery. J Fish Res Board Can 29:1344–1346

    Article  CAS  Google Scholar 

  • Houston AH, Woods RJ (1976) Influence of temperature upon tricaine methane sulphonate uptake and induction of anesthesia in rainbow trout (Salmo gairdneri). Compar Biochem Physiol C Pharmacol Toxicol Endocrinol 54:1–6

    Article  CAS  Google Scholar 

  • Houston AH, Madden JA, Woods RJ, Miles HM (1971a) Some physiological effects of handling and tricaine methanesulphonate anesthetization upon brook trout, Salvelinus fontinalis. J Fish Res Board Can 28:625–633

    Article  CAS  Google Scholar 

  • Houston AH, Madden JA, Woods RJ, Miles HM (1971b) Variations in blood and tissue chemistry of brook trout, Salvelinus fontinalis, subsequent to handling, anesthesia, and surgery. J Fish Res Board Can 28:635–642

    Article  CAS  Google Scholar 

  • Houston AH, Corlett JT, Woods RJ (1976) Specimen weight and MS-222. J Fish Res Board Can 33:1403–1407

    Article  Google Scholar 

  • Hunn JB (1970) Dynamics of MS-222 in the blood and brain of freshwater fishes during anesthesia, vol 42. Investigations in Fish Control, United States Department of the Interior

  • Hunn JB, Allen JL (1974) Movement of drugs across gills of fishes. Annu Rev Pharmacol Toxicol 14:47–55

    CAS  Google Scholar 

  • Hunn JB, Schoettger RA, Willford WA (1968) Turnover and urinary excretion of free and acetylated MS 222 by rainbow trout, Salmo gairdneri. J Fish Res Board Can 25:25–31

    Article  CAS  Google Scholar 

  • Ingvast-Larsson JC, Axén VC, Kiessling A (2003) Effects of isoeugenol on rat phrenic nerve-diaphragm preparations. Am J Veter Res 64:690–693

    Article  CAS  Google Scholar 

  • Iversen M, Finstad B, McKinley RS, Eliassen RA (2003) The efficacy of metomidate, clove oil, Aqui-S () and Benzoak (R) as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture 221:549–566

    Article  CAS  Google Scholar 

  • Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acid-base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool Revue Canadienne de Zoologie 67:2065–2073

    Article  CAS  Google Scholar 

  • Karlsson A, Eliason EJ, Mydland LT, Farrell AP, Kiessling A (2006) Postprandial changes in plasma free amino acid levels obtained simultaneously from the hepatic portal vein and the dorsal aorta in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209:4885–4894

    Article  PubMed  CAS  Google Scholar 

  • Karlsson A, Rosseland B-O, Thorarensen H, Kiessling A (2011a) Changes in arterial oxygen tension and physiological status in resting and unrestrained Arctic charr Salvelinus alpinus (L.) exposed to mild hypoxia and hyperoxia. J Fish Biol 78:962–966

    Google Scholar 

  • Karlsson A, Rosseland B-O, Massabuau JC, Kiessling A (2011b) Pre-anaesthetic metomidate sedation delays the stress response after caudal artery cannulation in Atlantic cod (Gadus morhua). Fish Physiol Biochem. doi:10.1007/s10695-011-9516x

  • Kiessling A, Dosanjh B, Higgs D, Deacon G, Rowshandeli N (1995) Dorsal aorta cannulation: a method to monitor changes in blood levels of astaxanthin in voluntarily feeding Atlantic salmon, Salmo salar L. Aquac Nutr 1:43–50

    Article  Google Scholar 

  • Kiessling A, Johansson D, Axen C, Johansson B (2001) Anestesi och analgesi vid vaccinering av lax. In: Olsen RE, Hansen T (eds) Havbruksrapporten 2001, Fisken og havet, saernr.3-2001

  • Kiessling A, Olsen RE, Buttle L (2003) Given the same dietary carotenoid inclusion, Atlantic salmon, Salmo salar (L.) display higher blood levels of canthaxanthin than astaxanthin. Aquac Nutr 9:253–261

    Article  CAS  Google Scholar 

  • Kiessling A, Johansson D, Zahl IH, Samuelsen OB (2009) Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration. Aquaculture 286:301–308

    Article  CAS  Google Scholar 

  • Kildea MA, Allan GL, Kearney RE (2004) Accumulation and clearance of the anaesthetics clove oil and AQUI-S (TM) from the edible tissue of silver perch (Bidyanus bidyanus). Aquaculture 232:265–277

    Article  CAS  Google Scholar 

  • King WV, Hooper B, Hillsgrove S, Benton C, Berlinsky DL (2005) The use of clove oil, metomidate, tricaine methanesulphonate and 2-phenoxyethanol for inducing anaesthesia and their effect on the cortisol stress response in black sea bass (Centropristis striata L.). Aquacult Res 36:1442–1449

    Article  CAS  Google Scholar 

  • Kreiberg H, Powell J (1991) Metomidate sedation reduces handling stress in chinook salmon. World Aqua 22:58–59

    Google Scholar 

  • Kumlu M, Yanar M (1999) Effects of the anesthetic quinaldine sulphate and muscle relaxant diazepam on sea bream juveniles (Sparus aurata). Israeli J Aqua Bamidgeh 51:143–147

    Google Scholar 

  • Lambooij B, Pilarczyk M, Bialowas H, Reimert H, Andre G, van de Vis H (2009) Anaesthetic properties of Propiscin (Etomidaat) and 2-phenoxyethanol in the common carp (Cyprinus carpio L.), neural and behavioural measures. Aquacult Res 40:1328–1333

    Article  CAS  Google Scholar 

  • Lee MH, Yeon KY, Park CK, Li HY, Fang Z, Kim MS, Choi SY, Lee SJ, Lee S, Park K, Lee JH, Kim JS, Oh SB (2005) Eugenol inhibits calcium currents in dental afferent neurons. J Dent Res 84:848–851

    Article  PubMed  CAS  Google Scholar 

  • Levron JC, Assoune P (1990) Pharmacokinetics of etomidate. Annales Françaises d’Anesthésie Et de Réanimation 9:123–126

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Park CK, Jung SJ, Choi SY, Lee SJ, Park K, Kim JS, Oh SB (2007) Eugenol inhibits K+ currents in trigeminal ganglion neurons. J Dent Res 86:898–902

    Article  PubMed  CAS  Google Scholar 

  • Lochowitz RT, Miles HM, Hafemann DR (1974) Anesthetic-induced variations in cardiac rate of the teleost, Salmo gairdneri. Gen Pharmacol 5:217–224

    Article  Google Scholar 

  • Marking LL, Meyer FP (1985) Are better anesthetics needed in fisheries? Fisheries 10:2–5

    Article  Google Scholar 

  • Mattson NS, Riple TH (1989) Metomidate, a better anesthetic for cod (Gadus morhua) in comparison with benzocaine, MS-222, chlorobutanol, and phenoxyethanol. Aquaculture 83:89–94

    Article  CAS  Google Scholar 

  • McFarland WN (1959) A study of the effects of anaesthetics on the behaviour and physiology of fishes. Publ Inst Mar Sci 6:22–55

    Google Scholar 

  • McFarland WN, Klontz GW (1969) Anesthesia in fishes. Feder Proc 28:1535–1540

    CAS  Google Scholar 

  • Meinertz JR, Gingerich WH, Allen JL (1991) Metabolism and elimination of benzocaine by rainbow trout (Oncorhynchus mykiss). Xenobiotica 21:525–533

    Article  PubMed  CAS  Google Scholar 

  • Meinertz JR, Stehly GR, Gingerich WH (1996) Pharmacokinetics of benzocaine in rainbow trout (Oncorhynchus mykiss) after intraarterial dosing. Aquaculture 148:39–48

    Article  CAS  Google Scholar 

  • Meinertz JR, Greseth SL, Schreier TM, Bernardy JA, Gingerich WH (2006) Isoeugenol concentrations in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue after exposure to AQUI-S (TM) at different temperatures, durations, and concentrations. Aquaculture 254:347–354

    Article  CAS  Google Scholar 

  • Molinero A, Gonzalez J (1995) Comparative effects of MS 222 and 2-phenoxyethanol on gilthead sea bream (Sparus aurata L) during confinement. Compar Biochem Physiol A Physiol 111:405–414

    Article  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisheries 9:211–268

    Article  Google Scholar 

  • Morris DJ, North AW (1984) Oxygen consumption of five species of fish from South Georgia. J Exp Mar Biol Ecol 78:75–86

    Article  Google Scholar 

  • Muir BS (1969) Gill dimensions as a function of fish size. J Fish Res Board Can 26:165–170

    Article  Google Scholar 

  • Musshoff U, Madeja M, Binding N, Witting U, Speckmann EJ (1999) Effects of 2-phenoxyethanol on N-methyl-D-aspartate (NMDA) receptor-mediated ion currents. Arch Toxicol 73:55–59

    Article  PubMed  CAS  Google Scholar 

  • Mylonas CC, Cardinaletti G, Sigelaki I, Polzonetti-Magni A (2005) Comparative efficacy of clove oil and 2-phenoxyethanol as anesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) at different temperatures. Aquaculture 246:467–481

    Article  CAS  Google Scholar 

  • Neiffer DL, Stamper MA (2009) Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J 50:343–360

    PubMed  CAS  Google Scholar 

  • Neumcke B, Schwarz W, Stampfli R (1981) Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflügers Archiv Eur J Physiol 390:230–236

    Article  CAS  Google Scholar 

  • Nilsson S, Sundin L (1998) Gill blood flow control. Compar Biochemis Physiol Part A Mol Integrat Physiol 119:137–147

    Article  CAS  Google Scholar 

  • Oikawa S, Itazawa Y (1985) Gill and body-surface areas of the carp in relation to body-mass, with special reference to the metabolism-size relationship. J Exp Biol 117:1–14

    Google Scholar 

  • Oikawa S, Hirata M, Kita J, Itazawa Y (1999) Ontogeny of respiratory area of a marine teleost, porgy, Pagrus major. Ichthyol Res 46:233–244

    Article  Google Scholar 

  • Olsen YA, Einarsdottir IE, Nilssen KJ (1995) Metomidate anesthesia in Atlantic salmon, Salmo salar, prevents plasma cortisol increase during stress. Aquaculture 134:155–168

    Article  CAS  Google Scholar 

  • Oppedal F, Johansson B, Kiesslin A (2000) Bedøvelse og vaksinering—økt appetitt ved bedre rutiner. 2000. Norsk Fiskeoppdrett no 9:24–26

    Google Scholar 

  • Ortuno J, Esteban MA, Meseguer J (2002) Effects of four anaesthetics on the innate immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 12:49–59

    Article  PubMed  CAS  Google Scholar 

  • Park CK, Li HY, Yeon KY, Jung SJ, Choi SY, Lee SJ, Lee S, Park K, Kim JS, Oh SB (2006) Eugenol inhibits sodium currents in dental afferent neurons. J Dent Res 85:900–904

    Article  PubMed  CAS  Google Scholar 

  • Pottinger TG, Carrick TR (1999) A comparison of plasma glucose and plasma cortisol as selection markers for high and low stress-responsiveness in female rainbow trout. Aquaculture 175:351–363

    Article  CAS  Google Scholar 

  • Pottinger TG, Pickering AD, Hurley MA (1992) Consistency in the stress response of individuals of two strains of rainbow trout, Oncorhynchus mykiss. Aquaculture 103:275–289

    Article  Google Scholar 

  • Pottinger TG, Moran TA, Morgan JAW (1994) Primary and secondary indices of stress in the progeny of rainbow trout (Oncorhynchus mykiss) selected for high and low responsiveness to stress. J Fish Biol 44:149–163

    Article  Google Scholar 

  • Randall DJ (1962) Effect of an anaesthetic on the heart and respiration of teleost fish. Nature 195:506

    Article  PubMed  CAS  Google Scholar 

  • Rang HP, Dale MM, Ritter JM, Moore PK (2003) Pharmacology. Churchill Livingstone, London

    Google Scholar 

  • Rigon AR, Takahashi RN (1996) The effects of systemic procaine, lidocaine and dimethocaine on nociception in mice. Gen Pharmacol 27:647–650

    PubMed  CAS  Google Scholar 

  • Ross LG, Ross B (2008) Anaesthetic and sedative techniques for aquatic animals. Blackwell, Oxford

    Book  Google Scholar 

  • Rothwell SE, Forster ME (2005) Anaesthetic effects on the hepatic portal vein and on the vascular resistance of the tail of the Chinook salmon (Oncorhynchus tshawytscha). Fish Physiol Biochem 31:11–21

    Article  CAS  Google Scholar 

  • Ruyter B, Moya-Falcon C, Rosenlund G, Vegusdal A (2006) Fat content and morphology of liver and intestine of Atlantic salmon (Salmo salar): Effects of temperature and dietary soybean oil. Aquaculture 252:441–452

    Article  CAS  Google Scholar 

  • Ryan S (1992) The dynamics of MS-222 anaesthesia in a marine teleost (Pagrus auratus: Sparidae). Compar Biochemis Physiol C Pharmacol Toxicol Endocrinol 101:593–600

    Article  CAS  Google Scholar 

  • Sams L, Braun C, Allman D, Hofmeister E (2008) A comparison of the effects of propofol and etomidate on the induction of anesthesia and on cardiopulmonary parameters in dogs. Veterinary Anaesth Analg 35:488–494

    Article  CAS  Google Scholar 

  • Sandodden R, Finstad B, Iversen M (2001) Transport stress in Atlantic salmon (Salmo salar L.): anaesthesia and recovery. Aquacult Res 32:87–90

    Article  CAS  Google Scholar 

  • Saunders RL (1963) Respiration of the Atlantic Cod. J Fish Res Board Can 20:373–386

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, New York

    Google Scholar 

  • Schoettger RA, Julin AM (1967) Efficacy of MS-222 as an anesthetic on four salmonids, vol 13. Investigations in Fish Control, United States Department of the Interior

  • Schoettger RA, Steucke EW (1970) Synergic mixtures of MS-222 and quinaldine as anesthetics for rainbow trout and northern pike. Progress Fish Cultur 32:202–205

    Article  CAS  Google Scholar 

  • Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50:1166–1180

    Google Scholar 

  • Sellner PA, Hazel JR (1982) Incorporation of polyunsaturated fatty acids into lipids of rainbow trout hepatocytes. Am J Physiol 243:R223–R228

    PubMed  CAS  Google Scholar 

  • Selye H (1985) The nature of stress. Basal Facts 7:3–11

    PubMed  CAS  Google Scholar 

  • Small BC (2003) Anesthetic efficacy of metomidate and comparison of plasma cortisol responses to tricaine methanesulfonate, quinaldine and clove oil anesthetized channel catfish Ictalurus punctatus. Aquaculture 218:177–185

    Article  CAS  Google Scholar 

  • Small BC (2004) Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors. Aquaculture 238:469–481

    Article  CAS  Google Scholar 

  • Small BC, Chatakondi N (2005) Routine measures of stress are reduced in mature channel catfish during and after AQUI-S anesthesia and recovery. NA J Aqua 67:72–78

    Article  Google Scholar 

  • Sneddon LU (2002) Anatomical and electrophysiological analysis of the trigeminal nerve in a teleost fish, Oncorhynchus mykiss. Neurosci Lett 319:167–171

    Article  PubMed  CAS  Google Scholar 

  • Sneddon LU (2003) Trigeminal somatosensory innervation of the head of a teleost fish with particular reference to nociception. Brain Res 972:44–52

    Article  PubMed  CAS  Google Scholar 

  • Sneddon LU, Braithwaite VA, Gentle MJ (2003) Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc R Soc Lond Ser B Biol Sci 270:1115–1121

    Article  Google Scholar 

  • Soivio A, Nyholm K, Huhti M (1977) Effects of anesthesia with MS 222, neutralized MS 222 and benzocaine on blood constituents of rainbow trout, Salmo gairdneri. J Fish Biol 10:91–101

    Article  CAS  Google Scholar 

  • Stehly GR, Gingerich WH (1999) Evaluation of AQUI-S (TM) (efficacy and minimum toxic concentration) as a fish anaesthetic sedative for public aquaculture in the United States. Aquacult Res 30:365–372

    Article  Google Scholar 

  • Stehly GR, Meinertz JR, Gingerich WH (1998) Effect of temperature on the pharmacokinetics of benzocaine in rainbow trout (Oncorhynchus mykiss) after bath exposures. J Vet Pharmacol Ther 21:121–127

    Article  PubMed  CAS  Google Scholar 

  • Stenger VG, Maren TH (1974) Pharmacology of MS 222 (ethyl-m-aminobenzoate) in Squalus acanthias. Gen Pharmacol 5:23–35

    Article  CAS  Google Scholar 

  • Summerfelt RC, Smith LS (1990) Anaesthesia and surgery and related techniques. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, pp 213–272

    Google Scholar 

  • Sumpter JP, Dye HM, Benfey TJ (1986) The effects of stress on plasma ACTH, α-MSH, and cortisol levels in salmonid fishes. Gen Comp Endocrinol 62:377–385

    Article  PubMed  CAS  Google Scholar 

  • Sylvester JR, Holland LE (1982) Influence of temperature, water hardness, and stocking density on MS-222 response in three species of fish. Progress Fish Cultur 44:138–141

    Article  Google Scholar 

  • Tanck MWT, Vermeulen KJ, Bovenhuis H, Komen H (2001) Heredity of stress-related cortisol response in androgenetic common carp (Cyprinus carpio L.). Aquaculture 199:283–294

    Article  CAS  Google Scholar 

  • Thomas P, Robertson L (1991) Plasma-cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow-water stressors and anesthesia with MS-222, quinaldine sulfate and metomidate. Aquaculture 96:69–86

    Article  CAS  Google Scholar 

  • Trenzado CE, Carrick TR, Pottinger TG (2003) Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. Gen Comp Endocrinol 133:332–340

    Article  PubMed  CAS  Google Scholar 

  • Ueta K, Suzuki T, Sugimoto M, Uchida I, Mashimo T (2007) Local anesthetics have different mechanisms and sites of action at recombinant 5-HT3 receptors. Reg Anesth Pain Med 32:462–470

    PubMed  CAS  Google Scholar 

  • Vanden Bossche H, Willemsens G, Cools W, Bellens D (1984) Effects of etomidate on steroid biosynthesis in subcellular fractions of bovine adrenals. Biochem Pharmacol 33:3861–3868

    Article  Google Scholar 

  • Velisek J, Stejskal V, Kouril J, Svobodova Z (2009) Comparison of the effects of four anaesthetics on biochemical blood profiles of perch. Aquacult Res 40:354–361

    Article  CAS  Google Scholar 

  • Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D (1984) Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 310:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Webber DM, Boutilier RG, Kerr SR (1998) Cardiac output as a predictor of metabolic rate in cod Gadus morhua. J Exp Biol 201:2779–2789

    PubMed  Google Scholar 

  • Weber RA, Peleteiro JB, Martin LOG, Aldegunde M (2009) The efficacy of 2-phenoxyethanol, metomidate, clove oil and MS-222 as anaesthetic agents in the Senegalese sole (Solea senegalensis Kaup 1858). Aquaculture 288:147–150

    Article  CAS  Google Scholar 

  • Wedemeyer GA (1970) Stress of anesthesia with MS-222 and benzocaine in rainbow trout (Salmo gairdneri). J Fish Res Board Can 27:909–914

    Article  CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Weyl O, Kaiser H, Hecht T (1996) On the efficacy and mode of action of 2-phenoxyethanol as an anaesthetic for goldfish, Carassius auratus (L.), at different temperatures and concentrations. Aquacult Res 27:757–764

    Google Scholar 

  • Wie MB, Won MH, Lee KH, Shin JH, Lee JC, Suh HW, Song DK, Kim YH (1997) Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci Lett 225:93–96

    Article  PubMed  CAS  Google Scholar 

  • Wiesenfeld-Hallin Z, Lindblom U (1985) The effect of systemic tocainide, lidocaine and bupivacaine on nociception in the rat. Pain 23:357–360

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Wiesenfeld-Hallin Z (1985) The systemic administration of local anaesthetics produces a selective depression of C-afferent fibre evoked activity in the spinal cord. Pain 23:361–374

    Article  PubMed  CAS  Google Scholar 

  • Woolsey J, Holcomb M, Ingermann RL (2004) Effect of temperature on clove oil anesthesia in steelhead fry. NA J Aqua 66:35–41

    Article  Google Scholar 

  • Yanar M, Kumlu M (2001) The anaesthetics effects of quinaldine sulphate and/or diazepam on sea bass (Dicentrarchus labrax) juveniles. Turk J Veter Anim Sci 25:185–189

    Google Scholar 

  • Yang J, Uchida I (1996) Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience 73:69–78

    Article  PubMed  CAS  Google Scholar 

  • Zahl IH, Kiessling A, Samuelsen OB, Hansen MK (2009) Anaesthesia of Atlantic cod (Gadus morhua)—effect of pre-anaesthetic sedation and importance of body weight, temperature and acute stress. Aquaculture 295(1–2):52–59

    Article  CAS  Google Scholar 

  • Zahl IH, Kiessling A, Samuelsen OB, Olsen RE (2010) Anaesthesia induces stress in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus). Fish Physiol. Biochemistry 36(3):719–730

    CAS  Google Scholar 

  • Zahl IH, Kiessling A, Samuelsen OB, Hansen MK (2011) Anaesthesia of Atlantic Halibut (Hippoglossus hippoglossus)—effect of pre-anaesthetic sedation and importance of body weight and water temperature. Aquacult Res 42:1235–1245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Kiessling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahl, I.H., Samuelsen, O. & Kiessling, A. Anaesthesia of farmed fish: implications for welfare. Fish Physiol Biochem 38, 201–218 (2012). https://doi.org/10.1007/s10695-011-9565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9565-1

Keywords

Navigation