Skip to main content
Log in

A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

In recent decades, aquaculture has played a significant role in fulfilling the vast demand for animal protein requirements and consequently in food security. However, environmental contamination and disease prevalence are considered essential challenges for the sector. In this regard, new approaches have been paved in technology to deal effectively with such challenges. Among these, nanotechnology—as a novel and innovative tool—has a broad spectrum of uses and a tremendous potential in aquaculture and seafood preservation. It can provide new technologies for management of drugs as liberation of vaccines and therefore hold the assurance for civilized protection of farmed fish against disease-causing pathogens. This article presents a review of nanotechnology and its applications in aquaculture. Additionally, it gives a brief idea about the fish disease and classical ways of controlling pathogens. On the other hand, this review sheds the light on nanotechnology as a potential novel tool which may possibly enhance the management and the control of disease prevalence. Therefore, the importance of this technology to promote sustainable aquaculture has also been highlighted. Focusing on the role of selenium nanoparticles as an efficient element is discussed also in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Tawwab M, Razek NA, Abdel-Rahman AM (2019) Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol 88:254–258

    Article  CAS  PubMed  Google Scholar 

  • Abhilash M (2010) Potential applications of nanoparticles. Int J Pharm Bio Sci V1(1):1–12

    Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T (2017) Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomedicine 12:7789–7797. https://doi.org/10.2147/IJN.S136748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    Article  CAS  Google Scholar 

  • Aydın F, Çek-Yalnız Ş (2019) Effect of probiotics on reproductive performance of fish. Nat Eng Sci 4(2):153–162

    Google Scholar 

  • Azdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. Daru 21(1):33

    Article  CAS  Google Scholar 

  • Bader A, Cioni PL, Flamini G (2010) GC-MS analysis of the essential oils of ripe fruits, roots and flowering aerial parts of Elaeoselinum asclepium subsp. meoides growing in Sicily. In: Natural product communications 5(7):1111–1114

    CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D (2008) Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol 46(2):446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A (2009) Nanoparticles-from drug delivery to insect pest control 1(1), 1–7.

  • Bhattacharyya A, Reddy SJ, Hasan MM, Adeyemi MM, Marye RR (2015) Nanotechnology-a unique future technology in aquaculture for the food security. International Journal of Bioassays 4(7):4115–4126

    CAS  Google Scholar 

  • Bhupinder SS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Google Scholar 

  • Branco ACCC, Yoshikawa FSY, Pietrobon AJ, Sato MN (2018) Role of histamine in modulating the immune response and inflammation. Mediators of Inflammation 2018 |Article ID 9524075 | 10 pages | https://doi.org/10.1155/2018/9524075.

  • Brudeseth BE, Wiulsrod BN, Fredriksen K, Lindmo KE, Lokling M, Bordevik N, Steine A, Klevan GK (2013) Status and future prospects of vaccines for industrialized fin-fish farming. Fish Shellfish Immunol 35:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306(1- 4):7–23

    Article  CAS  Google Scholar 

  • Can E, Kizak V, Kayim M, Can SS, Kutlu B, Ates M, Kocabasl M, Demirtas N (2011) Nanotechnological applications in aquaculture seafood industries and adverse effects of nanoparticles on environment. J Mater Sci Eng 5:605–609

    Google Scholar 

  • Carmen WEE, Forlenza L (2016) Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol 64:118–137

    Article  CAS  Google Scholar 

  • Chakraborty SB, Hancz C (2011) Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev Aquac 3:103–119

    Article  Google Scholar 

  • Chaplin DD (2010) Overview of the immune response. Journal of Allergy and Clinical Immunology 125(2 Suppl 2):S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980 PMID: 20176265; PMCID: PMC2923430

    Article  Google Scholar 

  • Chaves TP, Santana CP, Véras G, Brandão DO, Felismino DC, Medeiros ACD, Trovão DMBM (2013) Seasonal variation in the production of secondary metabolites and antimicrobial activity of two plant species used in Brazilian traditional medicine. Afr J Biotechnol 12:847–853

    Google Scholar 

  • Citarasu T (2010) Herbal biomedicines: a new opportunity for aquaculture industry. Aquac Int 18(3):403–414

    Article  Google Scholar 

  • Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G (2016) Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 9(6):758–771. https://doi.org/10.1111/1751-7915.12374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadar M, Dhama K, Vakharia VN, Hoseinifar SH, Karthik K, Tiwari R, Khandia R, Munjal A, Salgado-Miranda C, Joshi SK (2016) Advances in aquaculture vaccines against fish pathogens: global status and current trends. Reviews in Fisheries Science & Aquaculture 25(3):184–217. https://doi.org/10.1080/23308249.2016.1261277

    Article  Google Scholar 

  • Dar AH, Rashid N, Majid I, Hussain S, Dar MA (2019) Nanotechnology interventions in aquaculture and seafood preservation. Crit Rev Food Sci Nutr:1–10

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25(10):472–479. https://doi.org/10.1016/j.tibtech.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  • Deng YS, Chen QJ (2003) Affects of nano-selenium on the growth of Nile tilapia (Oreochromis niloticus). Inland Aquatic Production Journal 6:28–30 (In Chinese)

    Google Scholar 

  • Devi KP, Nisha SA, Sakthivel R, Pandian SK (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Doll TA, Raman S, Dey R, Burkhard P (2013) Nano scale assemblies and their biomedical applications. J R Soc Interface 10(80):20120740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dursun S, Erkan N, Yesiltas M (2010) Application of natural biopolymer based nanocomposite films in seafood. J Fish Sci 4(1):50–77

    CAS  Google Scholar 

  • El-Hammady AKI, Ibrahim SA, El-Kasheif MA (2007) Synergistic reactions between vitamin E and selenium in diets of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) and their effect on the growth and liver histological structure. Egyptian Journal of Aquatic Biology and Fisheries 11:53–58

    Article  Google Scholar 

  • El-Sayed Ali T, Abdel-Aziz SH, El-Sayed AM, Zeid S (2014a) Structural and functional effects of early exposure to 4-nonylphenol on gonadal development of Nile tilapia (Oreochromis niloticus): a-histological alterations in ovaries. Fish Physiol Biochem 40:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed Ali T, Abdel-Aziz SH, El-Sayed AM, Zeid S (2014b) Structural and functional effects of early exposure to 4-nonylphenol on gonadal development of Nile tilapia (Oreochromis niloticus): a-histological alterations in testes. Fish Physiol Biochem 40:1495–1507

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed Ali T, El-Sayed AM, Abdel-Razek Eissa M, Hanafi H (2017) Effects of dietary biogen and sodium butyrate on hematological parameters, immune response and histological characteristics of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac Int 26:139–150. https://doi.org/10.1007/s10499-017-0205-3

    Article  CAS  Google Scholar 

  • ETC (Action Group on Erosion, Technology and Concentration) 2003 Down on the farm: the impact of nanoscale technologies on food and agriculture, http://www.etcgroup.org/en/materials/publications.html?pub_id=80)

  • Evensen Ø (2009) Development in fish vaccinology with focus on delivery methodologies, adjuvants and formulations. Use Veterinary Drugs Vaccines Mediterranean Aquaculture 86:177–186

    Google Scholar 

  • Fang Z, Zhao Y, Warner RD, Johnson SK (2017) Active and intelligent packaging in meat industry. Trends Food Sci Technol 61:60–71

    Article  CAS  Google Scholar 

  • Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang X-F, Wang H (2018) Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 11:97. https://doi.org/10.1186/s13045-018-0637-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmen L (2009) Commercialization of nanotechnology for removal of heavy metals in drinking water. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc, Norwich, pp 115–130

    Chapter  Google Scholar 

  • Firdaus-Nawi M, Saad M (2016) Major components of fish immunity: a review. Pertanika J Tropical Agric Sci 39(4):393–420

    Google Scholar 

  • Fonghsu K (2008) Nanoemulsions for pharmaceutical and nutraceutical delivery in cancer and inflammation. Ph.D. thesis University of Massachusetts Lowell.

  • Frederick K, Kuhn ME, Tarver T (2010) Newinsights into food and health. Food Technology -Champaign Then Chicago 64(5):44–49

    Google Scholar 

  • Futalan CM, Kan CC, Dalida ML, Pascua C, Wan MW (2011) Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydr Polym 83:697–704

    Article  CAS  Google Scholar 

  • Gheibi Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234(8):12530–12536

    Article  CAS  PubMed  Google Scholar 

  • Gudding R, Van Muiswinkel WB (2013) A history of fish vaccination: science-based disease prevention in aquaculture. Fish and Shellfish Immunology 35(6):1683–1688

    Article  CAS  PubMed  Google Scholar 

  • Gustavo A, Dominguez (2014) Nanotechnology in the aquaculture industry. Sustainable Nano 1

  • Handy RD (2012) FSBI briefing paper: nanotechnology in fisheries and aquaculture. Fisheries Society of the British Isles (www.fsbi.org.uk/assets/brief-nanotechnology-fisheriesaquaculture.pdf)

  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem:1–29

  • Harikrishnan R, Heo J, Balasundaram C, Kim M-C, Kim J-U, Han Y-J, Heo M-S (2011) Effect of traditional Korean medicinal (TKM) triherbal extract on the innate immune system and disease resistance in Paralichthys olivaceus against Uronema marinum. Vet Parasitol 170:1–7. https://doi.org/10.1016/j.vetpar.2010.01.046

    Article  Google Scholar 

  • Hernando GA (2007) Nanotecnología y nanopartículas magnéticas: la Física actual en lucha contra la enfermedad. Rev. Real Academia de Ciencias Exactas, Físicas y Naturales (Esp) 101(2):321–327

    Google Scholar 

  • Hua M, Zhang S, Pan B et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  • Idowu TA, Adedeji HA, Sogbesan OA (2017) Fish disease and health management in aquaculture production. International Journal Environmental & Agricultural Science 1:2–6

    Google Scholar 

  • Irianto A, Austin B (2002) Review Probiotics in aquaculture. Journal of Fish Diseases (1997):633–642

  • Irvine DJ, Swartz MA, Szeto GL (2013) Engineering synthetic vaccines using cues from natural immunity. Nat Mater 12:978–990. https://doi.org/10.1038/nmat3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhász P, Lengyel S, Udvari Z, Sándor AN, Stündl L (2017) Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing. Acta Biol Hung 68:255–266

    Article  PubMed  CAS  Google Scholar 

  • Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24(21):17326–17346. https://doi.org/10.1007/s11356-017-9360-3

    Article  Google Scholar 

  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Pan JYJ, Korbel GA, Peperzak V, Boes M, Ploegh HL (2006) Monovalent ligation of the B cell receptor induces receptor activation but fails to promote antigen presentation. Proceedings of the National Academy of Sciences USA 103:3327–3332. https://doi.org/10.1073/pnas.0511315103

    Article  CAS  Google Scholar 

  • Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh Y-K (2014) Nanotechnology and vaccine development. Asian Journal of Pharmacological Science 9(5):227–235. https://doi.org/10.1016/j.ajps.2014.06.002

    Article  Google Scholar 

  • Kojouri GA, Sharifi S (2013) Preventing effects of nano-selenium particles on serum concentration of blood urea nitrogen, creatinine, and total protein during intense exercise in donkey. Journal of Equine Veterinary Science (JEVS) 33(8):597–600

    Article  Google Scholar 

  • Kothari D, Patel S, Kim SK (2019) Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother 111:537–547

    Article  CAS  PubMed  Google Scholar 

  • Kouba A, Velíšek J, Stará A, Masojídek J, Kozák P (2014) Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). Biomed Res Int 2014(2014):408270. https://doi.org/10.1155/2014/408270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Chawla J (2014) Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Health 5:215–226. https://doi.org/10.1007/s12403-013-0100-8

    Article  CAS  Google Scholar 

  • Kumar N, Krishnani KK, Gupta SK, Singh NP (2017) Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respir Physiol Neurobiol 246:107–116

    Article  CAS  PubMed  Google Scholar 

  • Kutlay M (2009) The factors that effect adoption of nanotechnological foods by society, Workshop of Nanotechnological Risks, Yeditepe University, Istanbul.

  • Kwasek K, Thorne-Lyman AL, Phillips M (2020) Can human nutrition be improved through better fish feeding practices? A review paper. Crit Rev Food Sci Nutr 60:3822–3835. https://doi.org/10.1080/10408398.2019.1708698

    Article  CAS  PubMed  Google Scholar 

  • Lai W, Hu Z, Fang Q (2013) The concerns on biosafety of nanomaterials. JSM Nanotechnol Nanomed 1(2):1009

    Google Scholar 

  • Le KT, Fotedar R, Partridge G (2013) Selenium and vitamin E interaction in the nutrition of yellowtail kingfish (): physiological and immune responses. Aquac Nutr 20:303–313

    Article  CAS  Google Scholar 

  • Liu J, Zhang YD, Zhang ZM (2008) Application study on nanobiotechnology in increasing yield benefit of rice, maize and soybean. J Anhui Agric Sci 36:15814–15816. (In Chinese with English abstract)

  • Luis AIS, Campos EVR, de OliveiraJL FLF (2019) Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Rev Aquac 11:119–132. https://doi.org/10.1111/raq.12229

    Article  Google Scholar 

  • Ma R, Rupam S, Md A, Ahmad S, Neeraj K, Mohammad K, Ramya VL (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fisheries and Aquaculture Journal 2011. https://doi.org/10.4172/2150-3508.1000016

  • Mamo T, Poland GA (2012) Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 30:6609–6611

    Article  CAS  PubMed  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. E J Immunol 38:1404–1413

    Article  CAS  Google Scholar 

  • Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25:1316–1327

    Article  CAS  PubMed  Google Scholar 

  • Mohanty BP (2015) Nutritional value of food fish. In: book: Conspectus on inland fisheries management, Chapter: # 2, Publisher: ICAR - Central Inland Fisheries Research Institute, Editors: A. K. Das and D. Panda, pp 15–21

    Google Scholar 

  • Mohd-Aris A, Muhamad-Sofie MHN, Zamri-Saad M, Daud HM, Ina-Salwany MY (2019) Live vaccines against bacterial fish diseases: a review. Veterinary World 12(11):1806–1815. https://doi.org/10.14202/vetworld.2019.1806-1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongillo FJ (2007) Nanotechnology 101. Greenwood Press, Westport, Connecticut/London

    Google Scholar 

  • Mottram P, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M (2007) Type 1 and type 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84

    Article  CAS  PubMed  Google Scholar 

  • Mozafari MR, Johnson C, Hatziantoniou S, Demetzos S (2008) Nanoliposomes and their applications in food nanotechnolog. Journal of Liposome Research 18(4):309–327

    Article  PubMed  CAS  Google Scholar 

  • Muruganandam M, Chipps SR, Ojasvi PR (2019) On the advanced technologies to enhance fisheries production and management. Acta Scientific Agriculture 3(8):216–222. https://doi.org/10.31080/ASAG.2019.03.0589

    Article  Google Scholar 

  • Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture 474:40–47

    Article  CAS  Google Scholar 

  • Namdeo M, Bajpai SK (2008) Chitosan-magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. Colloids Surf A Physicochem Eng Aspects 320:161–168

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

  • Ngo H (2015) The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture 446:88–96. https://doi.org/10.1016/j.aquaculture.2015.03.014

    Article  CAS  Google Scholar 

  • Pandey S, Mishra SB (2011) Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361:509–520

    Article  CAS  PubMed  Google Scholar 

  • Plant KP, LaPatra SE (2011) Advances in fish vaccine delivery. Dev Comp Immunol 35(12):1256–1262

    Article  CAS  PubMed  Google Scholar 

  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Advances in Nutition 10(suppl_1):S49–S66. https://doi.org/10.1093/advances/nmy063 PMID: 30721959; PMCID: PMC6363529

    Article  Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK (2015) A review on role of essential trace elements in health and disease. Journal of dr. ntr university of health sciences 4(2):75

    Article  Google Scholar 

  • Qin F, Shi M, Yuan H, Yuan L, Lu W, Zhang J, Tong J, Song X (2016) Dietary nanoselenium relieves hypoxia stress and, improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis). Fish shellfish immunol 54:481–488

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293. https://doi.org/10.1007/s00253-012-3969-4

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar S, Ahmed VPI, Parameswaran V et al (2008) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio manguillarum. Fish Shellfish Immunol 25:47–56

    Article  CAS  Google Scholar 

  • Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya VL (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquacult J 16:1–15

  • Rawn DFK, Krakalovich T, Forsyth D, Roscoe V (2009) Analysis of fin and non-fin fish products for azamethiphos and dichlorvos residues from the Canadian retail market. International Journal of Food Science & Technology 44:1510–1516. https://doi.org/10.1111/j.1365-2621.2007.01678.x

    Article  CAS  Google Scholar 

  • Reverter M, Tapissier-Bontemps N, Sasal P, Saulnier D (2017) Use of medicinal plants in aquaculture. Diagnosis and control of diseases of fish and shellfish 9:223–261

    Article  Google Scholar 

  • Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS et al (2017) Nanotechnology for sustainable food production: promising opportunities and scientifific challenges. Environmental Science: Nano 4:767–781

    CAS  Google Scholar 

  • Romero J, Feijoo CG, Navarrete P (2012) Antibiotics in aquaculture–use, abuse and alternatives, health and environment in aquaculture, Dr. Edmir Carvalho (Ed.), ISBN; 978-953-51-0497-1. Tech, Available from: http://www. intechopen. com/books/healthandenvironment-in-aquaculture/antibioticsin-aquacultureuse-abuse-and-alternatives.

  • Saffari S, Keyvanshokooh S, Zakeri M, Johari SA, Pasha-Zanoosi H (2017) Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac Nutr 23:611–617

    Article  CAS  Google Scholar 

  • Sahdev P, Ochyl PL, Moon JJ (2014) Biomaterials for nanoparticle vaccine delivery systems. Pharm Res 31:2563–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in application of nanoparticles in fish medicine: a review. Nanomed Nanotechnology 12(3):701–710

    Article  CAS  Google Scholar 

  • Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12:925–942. https://doi.org/10.1111/raq.12356

    Article  Google Scholar 

  • Sharma M, Shrivastav AB, Sahni YP, Pandey G (2012) Overviews of the treatment and control of common fish diseases. International Research Journal of Pharmacy 3(7):123–127

    Google Scholar 

  • Shi L-G, Yang R-J, Yue W-B, Xun W-J, Zhang C-X, Ren Y-S, Shi L, Lei F-U (2010) Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim Reprod Sci 118(2-4):248–254. https://doi.org/10.1016/j.anireprosci.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Research- SMALL RUMINANT RES 96:49–52. https://doi.org/10.1016/j.smallrumres.2010.11.005

    Article  Google Scholar 

  • Silva JRMC, Staines NA, Hernandez-Blazquez FJ, Porto-Neto LR, Borges JCS (2002) Phagocytosis and giant cell formation at 0° C by macrophage (MO) of Notothenia coriiceps. J Fish Biol 60(2):466–478

    Google Scholar 

  • Smith DM, Simon JK, Baker JR (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605. https://doi.org/10.1038/nri3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JD, Morton LD, Ulery BD (2015) Nanoparticles as synthetic vaccines. Curr Opin Biotechnol 34:217–224

    Article  CAS  PubMed  Google Scholar 

  • Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish aquaculture. Expert review of vaccine 4:89–101. https://doi.org/10.1586/14760584.4.1.89

    Article  CAS  Google Scholar 

  • Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468– 469:1014–1027. https://doi.org/10.1016/j.scitotenv.2013.09.044, 468-469

  • Torres SK, Campos VI, León CG, Rodríguez-Llamazares BSM, Rojas BSM, González BM, Smith BC, Mondaca MA, Campos ÁVL, Leon CG, AMA M, Rodríguez-Llamazares S, Rojas SM, González M, Smith C (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14(11):1236

    Article  CAS  Google Scholar 

  • Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of Royal Society Interface 10:20120939. https://doi.org/10.1098/rsif.2012.0939

    Article  CAS  Google Scholar 

  • Udo IU, Etukudo U, Anwana UIU (2018) Effects of chitosan and chitosan nanoparticles on water quality, growth performance, survival rate and meat quality of the African catfish, Clarias gariepinus. Nanoscience 1(1):12–25

    Article  Google Scholar 

  • Uribe C, Folch H, Enríquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56(10):486–503

    Article  CAS  Google Scholar 

  • Vinay TN, Bhat S, Gon Choudhury T, Paria A, Jung MH, Shivani Kallappa G, Jung SJ (2018) Recent advances in application of nanoparticles in fish vaccine delivery. Reviews in Fisheries Science & Aquaculture 26(1):29–41

    Article  Google Scholar 

  • Walker PJ (2004) Disease emergence and food security: global impact of pathogens on sustainable aquaculture production. In: Fish, aquaculture and food security, sustaining fish as a food supply. A conference conducted by the ATSE Crawford Fund Parliament House; pp.45-52.

  • Wang Y, Li J (2011) Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis niloticus. Nanotoxicology 5(3):425–431

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res A 100(12):3205–3210

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Han J, Li W, Xu Z (2007) Effect of different selenium source on growth performances, glutathione peroxidase activities, muscle composition and selenium concentration of allogynogenetic crucian carp (Carassius auratus gibelio). Anim Feed Sci Technol 134:243–251

    Article  CAS  Google Scholar 

  • Wang Y, Yan X, Fu L (2013) Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. Int J Nanomedicine 8:4007–4013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen JQ, Cai DW, Ding YL, Yu LS, Huang JW (2003) Summary report on experiment of Qiangdi nanometer 863 biological assistant growth unit in sea shrimp farming. J Mod Fish Inf 10:12–15 (in Chinses with English abstract)

    Google Scholar 

  • Zaman M, Good MF, Toth I (2013) Nano vaccines and their mode of action. Methods 60:226–231

    Article  CAS  PubMed  Google Scholar 

  • Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X (2017) Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. Journal of Nanobiotechnology 15(1):4. https://doi.org/10.1186/s12951-016-0243-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, Anton PJ, Middelberg APJ (2014) Nanoparticle vaccines. Vaccine 32(3):327–337. https://doi.org/10.1016/j.vaccine.2013.11.069

    Article  PubMed  Google Scholar 

  • Zhou B-C, Liu Z-Y, Wang G-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (Selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquac 291:78–81

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

Not applicable

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

The authors had equal role in the work.

Corresponding author

Correspondence to Tamer El-Sayed Ali.

Ethics declarations

Ethical approval

Ethics required is approved. The Ethical Committee of the Alexandria University and Kafr Elsheikh University approved the fish handling procedures.

Consent to participate

The authors all participated in the work.

Consent to publish

The authors certify that the publisher is permitted to publish this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Gavin Burnell

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr-Eldahan, S., Nabil-Adam, A., Shreadah, M.A. et al. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquacult Int 29, 1459–1480 (2021). https://doi.org/10.1007/s10499-021-00677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00677-7

Keywords

Navigation