Skip to main content
Log in

Polyinosinic:polycytidylic acid in vivo enhances Chinook salmon (Oncorhynchus tshawytscha) immunity and alters the fish metabolome

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Poly (I:C) is a viral pathogen-associated molecular pattern (PAMP) and a synthetic dsRNA analogue, which orchestrates antiviral responses through well conserved toll-like receptor 3 (tlr3), retinoic acid inducible gene I (RIG-1) like receptors (RLRs) and class A scavenger receptors (SR-As). This study investigated the effect of poly (I:C) in vivo on Chinook salmon (Oncorhynchus tshawytscha) haematology, innate immunity, serum and liver metabolite profiles, and lymphoid tissue cytokine transcript expression, over a 5-day period post-exposure. Poly (I:C) significantly enhanced differential monocyte and neutrophil counts, and reactive oxygen species (ROS) production in peripheral blood mononuclear cells (PBMCs). GC-MS-based metabolomics revealed that poly (I:C) significantly altered 23 liver and 13 serum metabolic features. Liver and serum metabolites involved in branched chain amino acid (BCAA) metabolism significantly increased at day 1 and returned to baseline by day 5; the citric acid cycle and ROS regulation were altered. Also, liver and serum metabolites involved in glycolysis were persistently depleted from day 1 to day 5. Liver metabolites involved in phospholipid metabolism increased at day 4 to 5 and decreased from day 2 to 4 in serum. At the molecular level, poly (I:C) upregulated antiviral ifnγ and Mx1, and anti-inflammatory il-10 in fish lymphoid tissues, which normalised to baseline by day 5. Overall, poly (I:C) induced innate and adaptive immune responses through multiple mechanisms and different levels in teleost O. tshawytscha. Findings may aid design and development of amelioration strategies against viral pathogens via metabolome reprograming. Targeted studies are recommended into identified pathways and survival biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggio R, Villas-Boas SG, Ruggiero K (2011) Metab: an R package for high-throughput analysis of metabolomics data generated by GC-MS. Bioinformatics 27:2316–2318. https://doi.org/10.1093/bioinformatics/btr379

    Article  CAS  PubMed  Google Scholar 

  • Ajeniyi SA, Solomon RJ (2014) Urea And creatinine of Clarias gariepinus in three different commercial ponds. Nature and Science 12:124–138

    Google Scholar 

  • Alfaro AC, Young T (2018) Showcasing metabolomic applications in aquaculture: a review. Reviews in Aquaculture 10:135–152

    Google Scholar 

  • Arnemo M, Kavaliauskis A, Gjøen T (2014) Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar). Developmental & Comparative Immunology 46:139–145. https://doi.org/10.1016/j.dci.2014.03.023

    Article  CAS  Google Scholar 

  • Aste-Amezaga M, Ma X, Sartori A, Trinchieri G (1998) Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10 The. Journal of Immunology 160:5936–5944

    CAS  Google Scholar 

  • Ballantyne JS (2001) Amino acid metabolism. In: Wright PA, Anderson PM (eds) Nitrogen excretion, vol 20. Fish Physiology. Academic Press, San Diego, California, USA., pp 77-107. doi: https://doi.org/10.1016/S1546-5098(01)20004-1

  • Berntssen MH et al (2016) Dietary vitamin A supplementation ameliorates the effects of poly-aromatic hydrocarbons in Atlantic salmon (Salmo salar). Aquat Toxicol 175:171–183. https://doi.org/10.1016/j.aquatox.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  • Biron CA, Sen GC (2001) Interferons and other cytokines. In: Knipe DM, Howley PM, Griffin DE, Martin M, Roizman B, Straus SE (eds) Fields virology, vol 4th. Lippincott-Raven, Philadelphia, pp 321–351

    Google Scholar 

  • Bjork SJ, Zhang Y-A, Hurst CN, Alonso-Naveiro ME, Alexander JD, Sunyer JO, Bartholomew JL (2014) Defenses of susceptible and resistant Chinook salmon (Oncorhynchus tshawytscha) against the myxozoan parasite Ceratomyxa shasta. Fish & shellfish immunology 37:87–95. https://doi.org/10.1016/j.fsi.2013.12.024

    Article  CAS  Google Scholar 

  • Brisse M, Ly H (2019) Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Frontiers in Immunology 10. https://doi.org/10.3389/fimmu.2019.01586

  • Browdy CL et al. (2012) Novel and emerging technologies: can they contribute to improving aquaculture sustainability? Paper presented at the Farming the waters for people and food, Phuket, Thailand, 22–25 September 2010.

  • Caipang CMA, Hirono I, Aoki T (2003) In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx. Virology 317:373–382. https://doi.org/10.1016/j.virol.2003.08.040

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2006) Branched-chain amino acids and immunity. The Journal of nutrition 136:288S–293S

    CAS  PubMed  Google Scholar 

  • Castro R, Tafalla C (2015) Overview of fish immunity. Mucosal Health in Aquaculture, In, pp 3–54. https://doi.org/10.1016/B978-0-12-417186-2.00002-9

    Book  Google Scholar 

  • Chen R et al (2019) Lomatogonium rotatum for treatment of acute liver injury in mice: a metabolomics study. Metabolites 9:227

    CAS  PubMed Central  Google Scholar 

  • Chong J et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, Rondeau EB, Koop BF, Devlin RH (2018) Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PloS one 13:e0195461

    PubMed  PubMed Central  Google Scholar 

  • Costas B, Rêgo PCNP, Simões I, Marques JF, Castro-Cunha M, Afonso A (2013) Cellular and humoral immune responses of Senegalese sole, Solea senegalensis (Kaup), following challenge with two Photobacterium damselae subsp. piscicida strains from different geographical origins. Journal of Fish Diseases 36:543–553. https://doi.org/10.1111/jfd.12033

    Article  CAS  PubMed  Google Scholar 

  • Das BK, Ellis AE, Collet B (2009) Induction and persistence of Mx protein in tissues, blood and plasma of Atlantic salmon parr, Salmo salar, injected with poly I: C. Fish & shellfish immunology 26:40–48

    CAS  Google Scholar 

  • DeWitte-Orr SJ, Collins SE, Bauer CM, Bowdish DM, Mossman KL (2010) An accessory to the ‘Trinity’: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS pathogens 6:e1000829

    PubMed  PubMed Central  Google Scholar 

  • Diggles B (2016) Updated disease risk assessment report–relocation of salmon farms in Marlborough Sounds, New Zealand.

  • Du CC, Yang MJ, Li MY, Yang J, Peng B, Li H, Peng XX (2017) Metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae. J Proteome Res 16:1880–1889. https://doi.org/10.1021/acs.jproteome.6b00944

    Article  CAS  PubMed  Google Scholar 

  • Eaton W (1990) Anti-viral activity in four species of salmonids following exposure to poly inosinic: cytidylic acid. Dis Aquat Organ 9:193–198

    Google Scholar 

  • Eisenreich W, Rudel T, Heesemann J, Goebel W (2019) How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol 9:42–42. https://doi.org/10.3389/fcimb.2019.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis A (2001) Innate host defense mechanisms of fish against viruses and bacteria. Developmental & Comparative Immunology 25:827–839

    CAS  Google Scholar 

  • Elward K, Gasque P (2003) “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Molecular immunology 40:85–94

    CAS  PubMed  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539. https://doi.org/10.1007/s10695-008-9259-5

    Article  CAS  PubMed  Google Scholar 

  • Espelid S, Løkken GB, Steiro K, Bøgwald J (1996) Effects of cortisol and stress on the immune system in Atlantic salmon (Salmo salarL.). Fish & Shellfish Immunology 6:95–110

    Google Scholar 

  • Espert L, Gongora C, Mechti N (2003) Interferon: antiviral mechanisms and viral escape. Bulletin du cancer 90:131–141

    PubMed  Google Scholar 

  • Everts B, Amiel E, Huang SCC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJW, Artyomov MN, Jones RG, Pearce EL, Pearce EJ (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nature immunology 15:323–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    CAS  PubMed  Google Scholar 

  • Fazio F (2019) Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture 500:237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030

    Article  Google Scholar 

  • FAO (2019) Fishery and Aquaculture Statistics. Global aquaculture production 1950-2017 (FishstatJ). Fisheries and Aquaculture Department [Online]. www.fao.org/fishery/statistics/software/fishstatj/en. Accessed 10/12/2019

  • Fritsch SD, Weichhart T (2016) Effects of interferons and viruses on metabolism. Frontiers in Immunology 7:630. https://doi.org/10.3389/fimmu.2016.00630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaber T, Strehl C, Buttgereit F (2017) Metabolic regulation of inflammation. Nature Reviews Rheumatology 13:267–279

    PubMed  Google Scholar 

  • Grayfer L, Belosevic M (2009) Molecular characterization, expression and functional analysis of goldfish (Carassius aurutus L.) interferon gamma. Developmental & Comparative Immunology 33:235–246

    CAS  Google Scholar 

  • Hall JC (1998) Glycine. Journal of Parenteral and Enteral Nutrition 22:393–398

    CAS  PubMed  Google Scholar 

  • Iwanaga S (2002) The molecular basis of innate immunity in the horseshoe crab. Current opinion in immunology 14:87–95

    CAS  PubMed  Google Scholar 

  • Jacobsen DW, Hannibal L (2019) Redox signaling in inherited diseases of metabolism. Current Opinion in Physiology 9:48–55. https://doi.org/10.1016/j.cophys.2019.04.024

    Article  Google Scholar 

  • Jasour MS et al (2017) A comprehensive approach to assess feathermeal as an alternative protein source in aquafeed. Journal of agricultural and food chemistry 65:10673–10684

    CAS  PubMed  Google Scholar 

  • Jensen I, Robertsen B (2002) Effect of double-stranded RNA and interferon on the antiviral activity of Atlantic salmon cells against infectious salmon anemia virus and infectious pancreatic necrosis virus. Fish & shellfish immunology 13:221–241

    CAS  Google Scholar 

  • Jensen I, Albuquerque A, Sommer A-I, Robertsen B (2002a) Effect of poly I: C on the expression of Mx proteins and resistance against infection by infectious salmon anaemia virus in Atlantic salmon. Fish & Shellfish Immunology 13:311–326

    CAS  Google Scholar 

  • Jensen I, Albuquerque A, Sommer AI, Robertsen B (2002b) Effect of poly I:C on the expression of Mx proteins and resistance against infection by infectious salmon anaemia virus in Atlantic salmon. Fish & Shellfish immunology 13:311–326

    CAS  Google Scholar 

  • Jensen I, Larsen R, Robertsen B (2002c) An antiviral state induced in Chinook salmon embryo cells (CHSE-214) by transfection with the double-stranded RNA poly I: C. Fish & shellfish immunology 13:367–378

    CAS  Google Scholar 

  • Jha Abhishek K et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430. https://doi.org/10.1016/j.immuni.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Tan NS, Ho B, Ding JL (2007) Respiratory protein–generated reactive oxygen species as an antimicrobial strategy. Nature Immunology 8:1114–1122. https://doi.org/10.1038/ni1501

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen JB, Robertsen B (1995) Yeast β-glucan stimulates respiratory burst activity of Atlantic salmon (Salmo salar L.) macrophages. Developmental & Comparative Immunology 19:43–57. https://doi.org/10.1016/0145-305X(94)00045-H

    Article  Google Scholar 

  • Jørgensen JB, Johansen L-H, Steiro K, Johansen A (2003) CpG DNA Induces Protective Antiviral Immune Responses in Atlantic Salmon (Salmo salar L.). Journal of Virology 77:11471. https://doi.org/10.1128/JVI.77.21.11471-11479.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavaliauskis A et al (2015) Use of Poly (I: C) stabilized with chitosan as a vaccine-adjuvant against viral hemorrhagic septicemia virus infection in zebrafish. Zebrafish 12:421–431

    CAS  PubMed  Google Scholar 

  • Kelly B, O'Neill LAJ (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell research 25:771–784. https://doi.org/10.1038/cr.2015.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitao Y, Kono T, Korenaga H, Iizasa T, Nakamura K, Savan R, Sakai M (2009) Characterization and expression analysis of type I interferon in common carp Cyprinus carpio L. Molecular immunology 46:2548–2556

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (1999) Nicotinic acid and nicotinamide. Nihon rinsho 57:2211–2217

    CAS  PubMed  Google Scholar 

  • Kortet R, Taskinen J, Sinisalo T, Jokinen I (2003) Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L. Biological Journal of the Linnean Society 78:117–127

    Google Scholar 

  • Langevin C, Boudinot P, Collet B (2019) IFN signaling in inflammation and viral infections: new insights from fish models. Viruses 11:302

    CAS  PubMed Central  Google Scholar 

  • Larsen R, Røkenes TP, Robertsen B (2004) Inhibition of infectious pancreatic necrosis virus replication by Atlantic salmon Mx1 protein. Journal of Virology 78:7938–7944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S (2017) Evaluation and improvement of current computational tools for metabolomics data analysis. Auckland University of Technology

  • Li W, Tang X, Xing J, Sheng X, Zhan W (2014) Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection. Plos one 9:e89962

    PubMed  PubMed Central  Google Scholar 

  • Liepke C, Baxmann S, Heine C, Breithaupt N, Ständker L, Forssmann W-G (2003) Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. Journal of Chromatography B 791:345–356

    CAS  Google Scholar 

  • Liu S, He L, Yao K (2018, 2018) The antioxidative function of alpha-ketoglutarate and its applications. BioMed research international

  • Lockhart K, Bowden T, Ellis AE (2004) Poly I: C-induced Mx responses in Atlantic salmon parr, post-smolts and growers. Fish & shellfish immunology 17:245–254

    CAS  Google Scholar 

  • Lockhart K, McBeath A, Collet B, Snow M, Ellis A (2007) Expression of Mx mRNA following infection with IPNV is greater in IPN-susceptible Atlantic salmon post-smolts than in IPN-resistant Atlantic salmon parr. Fish & shellfish immunology 22:151–156

    CAS  Google Scholar 

  • Lulijwa R et al (2019a) Characterisation of Chinook salmon (Oncorhynchus tshawytscha) blood and validation of flow cytometry cell count and viability assay kit. Fish & shellfish immunology 88:179–188

    Google Scholar 

  • Lulijwa R, Alfaro AC, Merien F, Burdass M, Venter L, Young T (2019b) In vitro immune response of chinook salmon (Oncorhynchus tshawytscha) peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide. Fish & Shellfish Immunology 94:190–198. https://doi.org/10.1016/j.fsi.2019.09.003

    Article  CAS  Google Scholar 

  • Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T (2019c) Advances in salmonid fish immunology: a review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. Fish & Shellfish Immunology 95:44–80. https://doi.org/10.1016/j.fsi.2019.10.006

    Article  CAS  Google Scholar 

  • Lulijwa R, Alfaro AC, Merien F, Burdass M, Meyer J, Venter L, Young T (2020) Metabolic and immune responses of Chinook salmon (Oncorhynchus tshawytscha) smolts to a short-term Poly (I: C) challenge. J Fish Biol 96:731–746

    CAS  PubMed  Google Scholar 

  • McBeath A, Snow M, Secombes C, Ellis A, Collet B (2007) Expression kinetics of interferon and interferon-induced genes in Atlantic salmon (Salmo salar) following infection with infectious pancreatic necrosis virus and infectious salmon anaemia virus. Fish & Shellfish Immunology 22:230–241

    CAS  Google Scholar 

  • McNab F, Mayer-Barber K, Sher A, Wack A, O’garra A (2015) Type I interferons in infectious disease. Nature Reviews Immunology 15:87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monjo AL, Poynter SJ, DeWitte-Orr SJ (2017) CHSE-214: A model for studying extracellular dsRNA sensing in vitro. Fish & Shellfish Immunology 68:266–271. https://doi.org/10.1016/j.fsi.2017.07.025

    Article  CAS  Google Scholar 

  • Morera D et al (2011) RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PloS one 6:e26998

    CAS  PubMed  PubMed Central  Google Scholar 

  • MPI (2019) The New Zealand Government Aquaculture Strategy 2025.

  • Neumann NF, Stafford JL, Barreda D, Ainsworth AJ, Belosevic M (2001) Antimicrobial mechanisms of fish phagocytes and their role in host defense. Developmental & Comparative Immunology 25:807–825. https://doi.org/10.1016/S0145-305X(01)00037-4

    Article  CAS  Google Scholar 

  • Nguyen TV, Alfaro AC, Young T, Ravi S, Merien F (2018) Metabolomics study of immune responses of New Zealand Greenshell™ mussels (Perna canaliculus) infected with pathogenic Vibrio sp. Marine Biotechnology 20:396–409. https://doi.org/10.1007/s10126-018-9804-x

    Article  CAS  PubMed  Google Scholar 

  • Nygaard R, Husgard S, Sommer A-I, Leong J-AC, Robertsen B (2000) Induction of Mx protein by interferon and double-stranded RNA in salmonid cells. Fish & shellfish immunology 10:435–450

    CAS  Google Scholar 

  • O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental Medicine 213:15–23

    PubMed  PubMed Central  Google Scholar 

  • Oidtmann B, Dixon P, Way K, Joiner C, Bayley AE (2018) Risk of waterborne virus spread–review of survival of relevant fish and crustacean viruses in the aquatic environment and implications for control measures. Reviews in Aquaculture 10:641–669

    Google Scholar 

  • Olsvik PA, Berntssen MHG, Softeland L (2017) In vitro toxicity of pirimiphos-methyl in Atlantic salmon hepatocytes. Toxicol Vitro 39:1–14. https://doi.org/10.1016/j.tiv.2016.11.008

    Article  CAS  Google Scholar 

  • Olsvik PA, Søfteland L (2018) Metabolic effects of p,p′-DDE on Atlantic salmon hepatocytes. Journal of Applied Toxicology 38:489–503. https://doi.org/10.1002/jat.3556

    Article  CAS  PubMed  Google Scholar 

  • Olsvik PA, Berntssen MHG, Softeland L (2015) Modifying effects of vitamin E on chlorpyrifos toxicity in Atlantic salmon. Plos One 10. https://doi.org/10.1371/journal.pone.0119250

  • Patel D, Witt SN (2017) Ethanolamine and phosphatidylethanolamine: partners in health and disease. Oxid Med Cell Longev 2017:4829180–4829180. https://doi.org/10.1155/2017/4829180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B, Li H, Peng X-X (2015a) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein & cell 6:628–637

    CAS  Google Scholar 

  • Peng B, Ma Y-M, Zhang J-Y, Li H (2015b) Metabolome strategy against Edwardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias. Fish & shellfish immunology 45:869–876

    CAS  Google Scholar 

  • Phang JM, Liu W, Zabirnyk O (2010) Proline metabolism and microenvironmental stress. Annual review of nutrition 30:441–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rauta PR, Nayak B, Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunology letters 148:23–33

    CAS  PubMed  Google Scholar 

  • Robertsen B, Trobridge G, Leongt J-A (1997) Molecular cloning of double-stranded RNA inducible Mx genes from Atlantic salmon (Salmo salar L.). Developmental & Comparative Immunology 21:397–412

    CAS  Google Scholar 

  • Robertsen B, Bergan V, Røkenes T, Larsen R, Albuquerque A (2003) Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity. Journal of Interferon & Cytokine Research 23:601–612

    CAS  Google Scholar 

  • Rodriguez MF, Wiens GD, Purcell MK, Palti Y (2005) Characterization of Toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics 57:510–519. https://doi.org/10.1007/s00251-005-0013-1

    Article  CAS  PubMed  Google Scholar 

  • Roques S, Deborde C, Richard N, Skiba-Cassy S, Moing A, Fauconneau B (2018a) 1H-NMR metabolomic investigation of the effect of alternative diets on rainbow trout plasma profiles. In: World Aquaculture Society 2018, Montpellier, France, Aug 25-29 2018 2018a. Hal archieves-ouvertes, Lyon, p 848

  • Roques S, Deborde C, Richard N, Skiba-Cassy S, Moing A, Fauconneau B (2018b) Meatabolomics and fish nutrition: a review in the context of sustainable feed development Reviews in Aquaculture:1-22 doi:https://doi.org/10.1111/raq.12316

  • Saint-Jean SR, Pérez-Prieto SI (2007) Effects of salmonid fish viruses on Mx gene expression and resistance to single or dual viral infections. Fish & shellfish immunology 23:390–400

    CAS  Google Scholar 

  • Sakai M, Kobayashi M, Yoshida T (1995) Activation of rainbow trout, Oncorhynchus mykiss, phagocytic cells by administration of bovine lactoferrin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 110:755–759

    Google Scholar 

  • Salazar JH (2014) Overview of urea and creatinine. Laboratory Medicine 45:e19–e20. https://doi.org/10.1309/lm920sbnzpjrjgut

    Article  Google Scholar 

  • Salinas I, Lockhart K, Bowden T, Collet B, Secombes C, Ellis A (2004) An assessment of immunostimulants as Mx inducers in Atlantic salmon (Salmo salar L.) parr and the effect of temperature on the kinetics of Mx responses. Fish & shellfish immunology 17:159–170

    CAS  Google Scholar 

  • Samuel CE (2001) Antiviral actions of interferons. Clinical Microbiology Reviews 14:778. https://doi.org/10.1128/CMR.14.4.778-809.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saray P, Roytrakul S, Pangeson T, Phetrungnapha A (2018) Comparative proteomic analysis of hepatopancreas in Macrobrachium rosenbergii responded to Poly (I:C). Fish & Shellfish Immunology 75:164–171. https://doi.org/10.1016/j.fsi.2018.02.008

    Article  CAS  Google Scholar 

  • Schiøtz BL, Bækkevold ES, Poulsen LC, Mjaaland S, Gjøen T (2009) Analysis of host- and strain-dependent cell death responses during infectious salmon anemia virus infection in vitro. Virology Journal 6:91. https://doi.org/10.1186/1743-422X-6-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nature protocols 3:1101

    CAS  PubMed  Google Scholar 

  • Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525. https://doi.org/10.1016/j.coviro.2011.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-γ: an overview of signals, mechanisms and functions. Journal of leukocyte biology 75:163–189

    CAS  PubMed  Google Scholar 

  • Semple SL, Vo NTK, Poynter SJ, Li M, Heath DD, DeWitte-Orr SJ, Dixon B (2018) Extracellular dsRNA induces a type I interferon response mediated via class A scavenger receptors in a novel Chinook salmon derived spleen cell line. Developmental & Comparative Immunology 89:93–101. https://doi.org/10.1016/j.dci.2018.08.010

    Article  CAS  Google Scholar 

  • Seppola M, Larsen AN, Steiro K, Robertsen B, Jensen I (2008) Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Molecular Immunology 45:887–897. https://doi.org/10.1016/j.molimm.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Wang D, Zhao J, Chen X (2018) Fish red blood cells express immune genes and responses. Aquaculture and Fisheries 3:14–21. https://doi.org/10.1016/j.aaf.2018.01.001

    Article  Google Scholar 

  • Shi Q et al (2018) Mitochondrial ROS activate interleukin-1β expression in allergic rhinitis. Oncol Lett 16:3193–3200. https://doi.org/10.3892/ol.2018.8984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtrichman R, Samuel CE (2001) The role of gamma interferon in antimicrobial immunity. Current opinion in microbiology 4:251–259

    CAS  PubMed  Google Scholar 

  • Softeland L et al (2014) Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food and Chemical Toxicology 73:157–174. https://doi.org/10.1016/j.fct.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  • Softeland L et al (2016) Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon (Salmo salar L.) than omega-6 and gamma tocopherol. Toxicology Reports 3:211–224. https://doi.org/10.1016/j.toxrep.2016.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solem ST, Jørgensen JB, Robertsen B (1995) Stimulation of respiratory burst and phagocytic activity in Atlantic salmon (Salmo salar L.) macrophages by lipopolysaccharide. Fish & Shellfish Immunology 5:475–491. https://doi.org/10.1016/S1050-4648(95)80049-2

    Article  Google Scholar 

  • Stafford J, Neumann NF, Belosevic M (1999) Inhibition of macrophage activity by mitogen-induced goldfish leukocyte deactivating factor. Developmental & Comparative Immunology 23:585–596

    CAS  Google Scholar 

  • Strandskog G, Villoing S, Iliev DB, Thim HL, Christie KE, Jørgensen JB (2011) Formulations combining CpG containing oliogonucleotides and poly I: C enhance the magnitude of immune responses and protection against pancreas disease in Atlantic salmon. Developmental & Comparative Immunology 35:1116–1127

    CAS  Google Scholar 

  • Sun B, Skjæveland I, Svingerud T, Zou J, Jørgensen J, Robertsen B (2011) Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon. Journal of virology 85:9188–9198. https://doi.org/10.1128/JVI.00319-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanekhy M (2016) The role of Toll-like receptors in innate immunity and infectious diseases of teleost. Aquaculture research 47:1369–1391

    CAS  Google Scholar 

  • Thim HL, Iliev DB, Christie KE, Villoing S, McLoughlin MF, Strandskog G, Jørgensen JB (2012) Immunoprotective activity of a Salmonid Alphavirus Vaccine: comparison of the immune responses induced by inactivated whole virus antigen formulations based on CpG class B oligonucleotides and poly I: C alone or combined with an oil adjuvant. Vaccine 30:4828–4834

    CAS  PubMed  Google Scholar 

  • Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 360:2335–2345. https://doi.org/10.1098/rstb.2005.1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe C, Folch H, Enriquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med-Czech 56:486–503

    CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology 9:112–124. https://doi.org/10.1038/nrm2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villas-Boas SG, Smart KF, Sivakumaran S, Lane GA (2011) Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1:3–20. https://doi.org/10.3390/metabo1010003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner L, Trattner S, Pickova J, Gomez-Requeni P, Moazzami AA (2014) 1 H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chemistry 147:98–105. https://doi.org/10.1016/j.foodchem.2013.09.128

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477. https://doi.org/10.1007/s00726-013-1493-1

    Article  CAS  PubMed  Google Scholar 

  • Wessel Ø, Olsen CM, Rimstad E, Dahle MK (2015) Piscine orthoreovirus (PRV) replicates in Atlantic salmon (Salmo salar L.) erythrocytes ex vivo. Veterinary Research 46:26. https://doi.org/10.1186/s13567-015-0154-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–d617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  • Workenhe ST, Kibenge MJ, Wright GM, Wadowska DW, Groman DB, Kibenge FS (2008) Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes. Virology journal 5:36

    PubMed  PubMed Central  Google Scholar 

  • Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, Patterson A, Smith AM, Chang CH, Liu Z, Artyomov MN, Pearce EL, Cella M, Pearce EJ (2016a) Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44:1325–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu N, Yang M, Gaur U, Xu H, Yao Y, Li D (2016b) Alpha-ketoglutarate: physiological functions and applications. Biomolecules & therapeutics 24:1–8. https://doi.org/10.4062/biomolther.2015.078

    Article  CAS  Google Scholar 

  • Yang Y, Sauve AA (2016) NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochimica et biophysica acta 1864:1787–1800. https://doi.org/10.1016/j.bbapap.2016.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M-J, Xu D, Yang D-X, Li L, Peng X-X, Chen Z-g, Li H (2020) Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 11:349–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young T et al (2017) Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. Dev Comp Immunol 73:229–245. https://doi.org/10.1016/j.dci.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  • Young T, Walker SP, Alfaro AC, Fletcher LM, Murray JS, Lulijwa R, Symonds J (2019) Impact of acute handling stress, anaesthesia, and euthanasia on fish plasma biochemistry: implications for veterinary screening and metabolomic sampling. Fish Physiology and Biochemistry 45:1485–1494. https://doi.org/10.1007/s10695-019-00669-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-B, Gui J-F (2012) Molecular regulation of interferon antiviral response in fish. Developmental & Comparative Immunology 38:193–202

    CAS  Google Scholar 

  • Zhong Z et al (2003) L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current Opinion in Clinical Nutrition & Metabolic Care 6:229–240

    CAS  Google Scholar 

  • Zhou Z-x, Zhang B-c, Sun L (2014a) Poly(I:C) induces antiviral immune responses in Japanese flounder (Paralichthys olivaceus) that require TLR3 and MDA5 and is negatively regulated by Myd88. PloS one 9:e112918–e112918. https://doi.org/10.1371/journal.pone.0112918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZX, Zhang BC, Sun L (2014b) Poly(I:C) induces antiviral immune responses in Japanese flounder (Paralichthys olivaceus) that require TLR3 and MDA5 and is negatively regulated by Myd88. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0112918

  • Zhu W, Zhang Y, Zhang J, Yuan G, Liu X, Ai T, Su J (2019) Astragalus polysaccharides, chitosan and poly(I:C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco. Fish & Shellfish Immunology 87:379–385. https://doi.org/10.1016/j.fsi.2019.01.033

    Article  CAS  Google Scholar 

  • Zou J, Carrington A, Collet B, Dijkstra JM, Yoshiura Y, Bols N, Secombes C (2005) Identification and bioactivities of IFN-γ in rainbow trout Oncorhynchus mykiss: the first Th1-type cytokine characterized functionally in fish. The Journal of Immunology 175:–2484. https://doi.org/10.4049/jimmunol.175.4.2484

Download references

Acknowledgement

The authors are grateful for the kind support received from the team at the Aquaculture Biotechnology Research Group, Auckland University of Technology (Auckland), Nelson Marlborough Institute of Technology (NMIT) Glenduan Aquaculture facility, and the NMIT nursing laboratory. We also thank the technicians and the logistical team at AUT’s School of Science, and Dr. Erica Zarate and Saras Green from the University of Auckland GC-MS facility. Kind thanks also goes to Dr. Seumas Walker at Cawthron Institute for technical support.

Funding

This work was supported by a New Zealand AID doctoral scholarship to Ronald Lulijwa under the supervision of Andrea C. Alfaro and Fabrice Merien and co-funded by Auckland University of Technology (AUT)’s Aquaculture Biotechnology Research Group (ABRG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Alfaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from the NMIT Animal Ethics Committee (NMIT-AEC-2018-NMIT-03).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 45 kb)

ESM 2

(XLSX 44 kb)

ESM 3

(XLSX 175 kb)

ESM 4

(XLSX 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lulijwa, R., Alfaro, A.C., Merien, F. et al. Polyinosinic:polycytidylic acid in vivo enhances Chinook salmon (Oncorhynchus tshawytscha) immunity and alters the fish metabolome. Aquacult Int 28, 2437–2463 (2020). https://doi.org/10.1007/s10499-020-00599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-020-00599-w

Keywords

Navigation