Skip to main content

Advertisement

Log in

Effects of total replacement of fish oil on growth performance, lipid metabolism and antioxidant capacity in tilapia (Oreochromis niloticus)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Five iso-nitrogenous (crude protein 32 %) and iso-energetic (gross energy 15 MJ kg−1) practical diets were formulated by totally replacing fish oil (FO) with soybean oil (SO), rapeseed oil (RO), linseed oil (LO) and pork lard (PL), respectively. These diets were fed to triplicate groups of 30 gift tilapia (Oreochromis niloticus) (mean initial weight 9 g). Fish were fed three times a day for 8 weeks at 26.5 ± 2.5 °C. The results showed that the replacement of FO with RO or LO or PL in tilapia diets did not affect growth or feed utilization. Fish fed SO exhibited lower specific growth rate and protein efficiency ratio, and higher feed conversion ratio. The lowest hepatosomatic index, hepatopancreas lipid content, hepatopancreas malondialdehyde contents, lipoprotein lipase and malate dehydrogenase activities in liver were observed in fish fed FO, LO and RO. Fish fed FO or LO exhibited higher aspartate transaminase and alanine transaminase activities in liver and higher total antioxidant capacity, superoxide dismutase and alkaline phosphatase activities in serum, but the values of these parameters were lower in fish fed PL in comparison with the other groups. This study showed that alternative lipid sources could be used successfully in tilapia diets except for SO. Total replacement of dietary fish oil by linseed oil could be possible without adverse effects on fish health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackman RG (1990) Canola fatty acids—an ideal mixture for health, nutrition and food use. In: Shahidi F (ed) Canola and rapeseed: production, chemistry, nutrition and processing technology. Avi Book, Van Nostrand Reinhold, New York, pp 81–98

    Chapter  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (2005) Official methods of analysis, 18th edn. Gaithersburg, MD, USA

    Google Scholar 

  • Bayraktar K, Bayır A (2012) The effect of the replacement of fish oil with animal fats on the growth performance, survival and fatty acid profile of rainbow trout juveniles, Oncorhynchus mykiss. Turk J Fish Aquat Sci 12:661–666

    Google Scholar 

  • Boone L, Meyer D, Cusick P, Ennulat D, Provencher-Bolliger A, Everds N, Meador V, Elliott G, Honor D, Bounous D, Jordan H (2005) Selection and interpretation of clinical pathology indicators of hepatic injury in preclinical studies. Vet Clin Pathol 34(3):182–188

    Article  PubMed  CAS  Google Scholar 

  • Bracco U (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60:1002–1009

    Google Scholar 

  • Bradford MM (1976) A refined and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cao JM, Liu YJ, Lao CL, Tian LX, Liang GY (1997) Effect of dietary fatty acids on tissue lipid content and fatty acid composition of grass carp. Acta Zoonutr Sinica 9:36–44

    Google Scholar 

  • Chou BS, Shiau SY (1999) Both n-6 and n-3 fatty acids are required for maximal growth of juvenile hybrid tilapia. N Am J Aquac 61(1):13–20

    Article  Google Scholar 

  • Erdogan H, Fadillioglu E, Ozgocmen S, Sogut S, Ozyurt B, Akyol O, Ardicoglu O (2004) Effect of fish oil supplementation on plasma oxidant/antioxidant status in rats. Prostaglandins Leukot Essent Fatty Acids 71:149–152

    Article  PubMed  CAS  Google Scholar 

  • Ferreira MW, Araujo FG, Costa DV, Rosa PV, Figueiredo HCP, Murgas LDS (2011) Influence of dietary oil sources on muscle composition and plasma lipoprotein concentration in Nile tilapia (Oreochromis niloticus). J World Aquac Soc 42:24–33

    Article  Google Scholar 

  • Flavia P, Cornel L (2009) Research regarding changes in the chemical composition of animal fats during freezing storage. Ann Univ Dunarea de Jos G Fasc VI Food Technol New Ser Year III XXXIII:33–38

    Google Scholar 

  • Food and Agriculture Organization (FAO) (2010) The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department, Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Fountoulaki E, Vasilaki A, Hurtado R, Grigorakis K, Karacostas I, Nengas I, Rigos G, Kotzamanis Y, Venou B, Alexis MN (2009) Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile: recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture 289:317–326

    Article  CAS  Google Scholar 

  • Francis DS, Turchini GM, Jones PL, Silva SS (2006) Effects of dietary oil source on growth and fillet fatty acid composition of Murray cod, Maccullochella peelii peelii. Aquaculture 253:547–556

    Article  CAS  Google Scholar 

  • Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genom 12:522

    Article  CAS  Google Scholar 

  • Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, And Blood Institute/American Heart Association Conference on scientific issues related to definition. Clin Biochem Rev 25(3):195–198

    Google Scholar 

  • Guler M, Yildiz M (2011) Effects of dietary fish oil replacement by cottonseed oil on growth performance and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Turk J Vet Anim Sci 35(3):157–167

    CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715–725

    Google Scholar 

  • Han CY, Zheng QM, Feng LN (2013) Effects of total replacement of dietary fish oil on growth performance and fatty acid compositions of hybrid tilapia (Orechromis niloticus × O.aureus). Aquac Int 21:1209–1217

    Article  CAS  Google Scholar 

  • Henderson RJ (1996) Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch Tierenahr 49(1):5–22

    Article  CAS  Google Scholar 

  • Higgs DA, Balfry SK, Oakes JD, Rowshandeli M, Skura BJ, Deacon G (2006) Efficacy of an equal blend of canola oil and poultry fat as an alternate dietary lipid source for Atlantic salmon (Salmo salar L.) in sea water. I: effects on growth performance, and whole body and fillet proximate and lipid composition. Aquac Res 37:180–191

    Article  CAS  Google Scholar 

  • Huang CH, Huang MC, Hou PC (1998) Effect of dietary lipids on fatty acid composition and lipid oxidation in sarcoplasmic reticulum of hybrid tilapia, Orechromis niloticus × O.aureus. Comp Biochem Physiol Part B 120:331–336

    Article  Google Scholar 

  • Ibáñez AJ, Peinado-Onsurbe J, Sánchez E, Prat F (2003) The role of lipoprotein lipase (LPL) in the incorporation of neutral lipids into the oocytes of the European sea bass (Dicentrarchus labrax L.) during gonadal development. Fish Physiol Biochem 28(1–4):291–293

    Article  Google Scholar 

  • Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol Part B 159:49–56

    Article  Google Scholar 

  • Kanazawa A, Teshima SI, Sakamoto M, Awal MA (1980) Requirement of tilapia zillii for essential fatty acids. Bull Jpn Sci Fish 46:1353–1356

    Article  CAS  Google Scholar 

  • Khan MW, Priyamvada S, Khan SA, Khan S, Naqshbandi A, Yusufi ANK (2013) Protective effect of x-3 polyunsaturated fatty acids (PUFA) on sodium nitrite induced nephrotoxicity and oxidative damage in rat kidney. J Funct Foods 5:956–967

    Article  Google Scholar 

  • Kiessling KH, Kiessling A (1993) Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria. Can J Zool 71:248–251

    Article  CAS  Google Scholar 

  • Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC (2008) Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47:1363–1370

    Article  PubMed  CAS  Google Scholar 

  • Kiron V, Thawonsuwan J, Panigrahi A, Scharsack JP, Satoh S (2011) Antioxidant and immune defences of rainbow trout (Oncorhynchus mykiss) offered plant oils differing in fatty acid profiles from early stages. Aquac Nutr 17(2):130–140

    Article  CAS  Google Scholar 

  • Leaver MJ, Bautista JM, Bjornsson BT, Jonsson E, Krey G, Tocher DR, Torstensen BE (2008) Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture. Rev Fish Sci 16:71–92

    Article  Google Scholar 

  • Lemaire P, Drai P, Mathieu A, Lemaire S, Carrière S, Giudicelli J, Laufaurie M (1991) Changes with different diets in plasma enzymes (GOT, GPT, LDH, ALP) and plasma lipids (cholesterol, triglycerides) of sea bass (Dicentrarchus labrax). Aquaculture 93:63–75

    Article  CAS  Google Scholar 

  • Lin SM, Mai KS, Tan BP (2007) Effect of soybean meal replacement by rapeseed-cottonseed compound on growth, body composition and immunity of tilapia Oreochromis niloticus × O. aureus. Oceanol Limnol Sin 38(2):168–173

    CAS  Google Scholar 

  • Liu KKM, Barrows FT, Hardy RW, Dong FM (2004) Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin or menhaden oil. Aquaculture 238:309–328

    Article  CAS  Google Scholar 

  • Menoyo D, Lopez-Bote CJ, Bautista JM, Obach A (2003) Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture 225:295–307

    Article  CAS  Google Scholar 

  • Montero D, Mathlouthi F, Tort L, Afonso JM, Torrecillas S, Fernández-Vaquero A, Negrin D, Izquierdo MS (2010) Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata. Fish Shellfish Immunol 29:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Mourente G, Díaz-Salvago E, Bell JG, Tocher DR (2002) Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture 214:343–361

    Article  CAS  Google Scholar 

  • Musso G, Gambino R, Cassader M (2009) Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 48:1–26

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington

    Google Scholar 

  • Ng WK, Chong CY, Wang Y, Romano N (2013) Effects of dietary fish and vegetable oils on the growth, tissue fatty acid composition of forces, oxidative stability and vitamin E content of red hybrid tilapia and efficacy of using fish oil finishing diets. Aquaculture 372–375:97–110

    Article  Google Scholar 

  • Ostaszewska T, Dabrowski KM, Palacios E, Olejniczak M, Wieczorek M (2005) Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture 245:273–286

    Article  CAS  Google Scholar 

  • Piedecausa MA, Mazon MJ, Garcia-Garcia B, Hernandez MD (2007) Effects of total replacement of fish oil by vegetable oil in the diets of sharpsnout sea bream (Diplodus pintazzo). Aquaculture 263:211–219

    Article  CAS  Google Scholar 

  • Racicot JG, Gaudet M, Leray C (1975) Blood and liver enzymes in rainbow trout (Salmo gairdneri Rich.) with emphasis on their diagnostic use: study of CCI4 toxicity and a case of Aeromonas infection. J Fish Biol 7:825–835

    Article  CAS  Google Scholar 

  • Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:852–858

  • Ribeiro PAP, Logato PVR, de Jesús Paula DA, Costa AC, Murgas LDS, de Freitas RTF (2008) Effect of different oils in the diet on lipogenesis and the lipid profile of nile tilapias. Rev Bras Zootec 37(8):1331–1337

    Article  Google Scholar 

  • Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effects on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 96:299–309

    Article  PubMed  CAS  Google Scholar 

  • Rinchard J, Czesny S, Dabrowski K (2007) Influence of lipid class and fatty acid deficiency on survival, growth, and fatty acid composition in rainbow trout juveniles. Aquaculture 264:363–371

    Article  CAS  Google Scholar 

  • Rosenlund G, Obach A, Sandberg MG, Standal H, Tveit K (2001) Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquac Res 32:323–328

    Article  CAS  Google Scholar 

  • Rueda-Jasso R, Conceicao LEC, Dias J, De Coen W, Gomes E, Rees JF, Soares F, Dinis MT, Sorgeloos P (2004) Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture 231:417–433

    Article  CAS  Google Scholar 

  • Santiago CB, Reyes OS (1993) Effects of dietary lipid source on reproductive performance and tissue lipid levels of Nile tilapia Oreochromis niloticus (Linnaeus) broodstock. J Appl Ichthyol 9:33–40

    Article  CAS  Google Scholar 

  • Stickney RR, Hardy RW (1989) Lipid requirements of some warm water species. Aquaculture 79:145–156

    Article  CAS  Google Scholar 

  • Szabó A, Mézes M, Hancz C, Molnár T, Varga D, Romvári R, Fébel H (2011) Incorporation dynamics of dietary vegetable oil fatty acids into the triacylglycerols and phospholipids of tilapia (Oreochromis niloticus) tissues (fillet, liver, visceral fat and gonads). Aquac Nutr 17:e132–e147

    Article  Google Scholar 

  • Takeuchi T, Satoh S, Watanabe T (1983a) Requirement of tilapia nilotica for essential fatty acids. Bull Jpn Sci Fish 49:1127–1134

    Article  CAS  Google Scholar 

  • Takeuchi T, Satoh S, Watanabe T (1983b) Dietary lipids suitable for the practical feed of tilapia nilotica. Bull Jpn Soc Sci Fish 49(9):1361–1365

    Article  CAS  Google Scholar 

  • Takeuchi T, Toyota M, Satoh S, Watanabe T (1990) Requirements of juvenile red seabream, Pagrus major, for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56:1263–1269

    Article  CAS  Google Scholar 

  • Turchini GM, Mentasti T, Frøland L, Orban E, Caprino F, Moretti VM, Valfre F (2003) Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquaculture 225(1–4):251–267

    Article  CAS  Google Scholar 

  • Turchini GM, Torstensen BE, Wing-Kenong Ng (2009) Fish oil replacement in finfish nutrition. Rev Aquac 1:10–57

    Article  Google Scholar 

  • Turchini GM, Francis DS, Senadheera SPSD, Thanuthong T, De Silva SS (2011) Fish oil replacement with different vegetable oils in Murray cod: evidence of an “omega-3 sparing effect” by other dietary fatty acids. Aquaculture 315:250–259

    Article  CAS  Google Scholar 

  • Wang HH, Hung TM, Wei J, Chiang AN (2004) Fish oil increases antioxidant enzyme activities in macrophages and reduces atherosclerotic lesions in apoE-knockout mice. Cardiovasc Res 61:169–176

    Article  PubMed  CAS  Google Scholar 

  • Xi S, Chen LH (2000) Effects of dietary fish oil on tissue glutathione and antioxidant defense enzymes in mice with murine aids. Nutr Res 20(9):1287–1299

    Article  CAS  Google Scholar 

  • Yildirim-Aksoy M, Lim C, Davis A, Klesius PH (2007) Influence of dietary lipid sources on the growth performance, immune response and resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae challenge. J Appl Aquac 19:29–49

    Article  Google Scholar 

  • Yilmaz HR, Songur A, Özyurt B, Zararsiz I, Sarsilmaz M (2004) The effects of n-3 polyunsaturated fatty acids by gavage on some metabolic enzymes of rat liver. Prostaglandins. Prostaglandins. Leukot Essent Fatty Acids 71:131–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lin X and Ren W for taking care of the tilapia. Special thanks to Guan Y and Mao SH for helping with the chemical analysis. This research was supported by funds from the Science and Technology Council of Chongqing, China (No.cstc2013jcyjA80037) and by fundamental research funds for the Central Universities, China (No. XDJK2015A001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimei Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Li, F., Lin, S. et al. Effects of total replacement of fish oil on growth performance, lipid metabolism and antioxidant capacity in tilapia (Oreochromis niloticus). Aquacult Int 24, 145–156 (2016). https://doi.org/10.1007/s10499-015-9914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9914-7

Keywords

Navigation