Skip to main content
Log in

Unraveling the Role of Capillarity in Arsenic Mobility: Insights from a Sedimentary–Karstic Aquifer in Semiarid Soil

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Arsenic (As) contamination in soil and groundwater poses significant environmental and human health concerns. While chemical mechanisms like solubility equilibria, oxidation–reduction, and ionic exchange reactions have been studied to understand As retention in soil, the influence of capillarity on As transport remains poorly understood, particularly in semiarid soils with broader capillary fringes. This research aims to shed light on the capillary contribution to As attenuation and mobilization in the groundwater, focusing on degraded soil in the northeast of San Luis Potosí, Mexico. Groundwater surveys revealed a remarkable depletion of As concentrations from 91.50 to 11.27 mg L−1, indicating potential As sorption by the underlying shallow aquifer. We examined soil samples collected from the topsoil to the saturated zone using advanced analytical techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and wet chemical analyses. Our findings unveiled the presence of three distinct zones in the soil column: (1) the A horizon with heavy metals, (2) dispersed calcium sulfate dihydrate crystals and stratified gypsum, and (3) a higher concentration of arsenic in the capillary fringe. Notably, the capillary fringe exhibited a significant accumulation of As, constituting 40% (169.22 mg kg−1) of the total arsenic proportion accumulated (359.27 mg kg−1). The arsenic behavior in the capillary fringe solid phase correlated with total iron behavior, but they were distributed among different mineral fractions. The labile fraction, rich in arsenic, contrasted with the more recalcitrant fractions, which exhibited higher iron content. Further, thermodynamic stability assessments using the geochemical code PHREEQC revealed the critical role of Ca5H2(AsO4)4:9H2O in controlling HAsO42− and the formation of HAsO4:2H2O and CaHAsO4:H2O. During experimentation, we observed arsenate dissolution, indicating the potential mobilization of As in aqueous species. This mobilization was found to vary depending on redox conditions and may become labile during flooding events or water table variations, especially when As concentrations are low compared to metal cations, as demonstrated in our experiments. Our research underscores the significance of developing accurate geochemical conceptual models that incorporate capillarity to predict As leaching and remobilization accurately. This study presents novel insights into the understanding of As transport mechanisms and suggests the necessity of considering capillarity in geochemical models. By comprehending the capillary contribution to As attenuation, we can develop effective strategies to mitigate As contamination in semiarid soils and safeguard groundwater quality, thereby addressing crucial environmental and public health concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abit SM, Amoozegar A, Vepraskas MJ, Niewoehner CP (2008) Solute transport in the capillary fringe and shallow groundwater: field evaluation. Vadose Zo J 7:890–898. https://doi.org/10.2136/vzj2007.0102

    Article  CAS  Google Scholar 

  • Ahumada I, Escudero P, Ascar L, Mendoza J, Richter P (2004) Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Commun Soil Sci Plant Anal 35:1615–1634. https://doi.org/10.1081/CSS-120038558

    Article  CAS  Google Scholar 

  • Alexandratos VG, Elzinga EJ, Reeder RJ (2007) Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim Cosmochim Acta 71:4172–4187. https://doi.org/10.1016/j.gca.2007.06.055

    Article  CAS  Google Scholar 

  • ASTM (2020) Standard test methods for pH of soils. ASTM International, UK

    Google Scholar 

  • ASTM (2017) Test method for particle-size distribution (Gradation) of fine-grained soils using the sedimentation (Hydrometer) analysis, D7928-17. ASTM International

  • Bardelli F, Benvenuti M, Costagliola P, Di Benedetto F, Lattanzi P, Meneghini C, Romanelli M, Valenzano L (2011) Arsenic uptake by natural calcite: an XAS study. Geochim Cosmochim Acta 75:3011–3023. https://doi.org/10.1016/j.gca.2011.03.003

    Article  CAS  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk Density. In: Klute A (ed) Methods of soil analysis: part 1—physical and mineralogical methods. Soil Science Society of America Inc, Madison, Wisconsin, pp 363–375

    Google Scholar 

  • Boisson J, Mench M, Vangronsveld J, Ruttens A, Kopponen P, De Koe T (1999) Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Commun Soil Sci Plant Anal 30:365–387. https://doi.org/10.1080/00103629909370210

    Article  CAS  Google Scholar 

  • Bothe JV Jr (1998) Phase formation and chemical phase equilibria in aqueous-based systems pertinent to waste-management: calcium oxide-alluminum oxide-borate-water, calcium oxide-lead oxide-phosphate-water and calcium oxide-arsenate-water. The Pennsylvania State University

    Google Scholar 

  • Bothe JV, Brown PW (1999) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33:3806–3811. https://doi.org/10.1021/es980998m

    Article  CAS  Google Scholar 

  • Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9:279–286. https://doi.org/10.1016/0883-2927(94)90038-8

    Article  CAS  Google Scholar 

  • Castillo F, Ávalos-Borja M, Jamieson H, Hernández-Bárcenas G, Martínez-Villegas N (2015) Identification of diagenetic calcium arsenates using synchrotron-based micro X-ray diffraction. Boletín Soc Geol Mex 67:479–491

    Article  Google Scholar 

  • Charlet L, Chakraborty S, Varma S, Tournassat C, Wolthers M, Chatterjee D, Ross GR (2005) Adsorption and heterogeneous reduction of arsenic at the phyllosilicate-water interface. In: ODay PA, Vlassopoulos D, Meng Z, Benning LG (eds.) Symposium on advances in arsenic research. ACS Symposium Series, p 41

  • Chiprés FJA (2008) Mapeo geoquímico ambiental de suelos en el Altiplano Potosino y determinación de valores de fondo para arsénico y metales pesados en el área de Villa de la Paz-Matehuala, S.L.P. (Tesis de doctorado). Tesis de Doctorado en Ciencias Ambientales PMPCA UASLP, San Luis Potosi, S.L.P., México, México.

  • Cheng L, Fenter P, Sturchio NC, Zhong Z, Bedzyk MJ (1999) X-ray standing wave study of arsenite incorporation at the calcite surface. Geochim Cosmochim Acta 63:3153–3157. https://doi.org/10.1016/S0016-7037(99)00242-2

    Article  CAS  Google Scholar 

  • Choi S, O’Day PA, Hering JG (2009) Natural attenuation of arsenic by sediment sorption and oxidation. Environ Sci Technol 43:4253–4259. https://doi.org/10.1021/es802841x

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) Introduction to the iron oxides, 2nd edn. WILEY-VCH GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/3527602097.ch1

    Book  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. https://doi.org/10.1021/es030309t

    Article  CAS  Google Scholar 

  • Dong Y, Li J, Zan J (2018) Occurrence and distribution of arsenic in water and soil at Inland-arid/semi-arid basin. IOP Conference Series: Earth and Environmental Scienc, vol 146. https://doi.org/10.1088/1755-1315/146/1/012052

  • Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press LLC, Boca Raton. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  • Filippi M, Golia V, Pertold Z (2004) Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudny ´ Hory gold deposits, ˇ perske and Kas Bohemian Massif (CZ ). Environ Geol 45:716–730. https://doi.org/10.1007/s00254-003-0929-4

    Article  CAS  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) An overview of unsaturated soil behavior. Proc ASCE Spec Ser Unsaturated Soil Prop 24(28):1–31

  • Fukue M, Nakamura T, Kato Y (1999) Cementation of soils due to calcium carbonate. Soils Found 39:55–64. https://doi.org/10.3208/sandf.39.6_55

    Article  Google Scholar 

  • Gerdelidani AF, Towfighi H, Shahbazi K, Lamb DT, Choppala G, Abbasi S, Fazle Bari ASM, Naidu R, Rahman MM (2021) Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils. J Hazard Mater 403:123931. https://doi.org/10.1016/j.jhazmat.2020.123931

    Article  CAS  Google Scholar 

  • Ginder-Vogel M, Sparks DL (2010) The impacts of X-ray absorption spectroscopy on understanding soil processes and reaction mechanisms. In: Balwant Singh MG (ed) Synchrotron-based techniques in soils and sediments. Elsevier B.V, Amsterdam, pp 1–26

    Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals contribution from the George E. Brown Jr., salinity laboratory. Soil Sci Soc Am J 66:413–421. https://doi.org/10.2136/sssaj2002.4130

    Article  CAS  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil-arsenic. Soil Sci Soc Am J 52(5):1297–1300

    Article  CAS  Google Scholar 

  • Gómez-Giraldo JC (2013) Manual de prácticas de campo y del laboratorio de suelos. Espinal-Tolima

  • Gómez-Hernández A, Rodríguez R, Lara del Río A, Ruiz-Huerta EA, Armienta MA, Dávila-Harris P, Sen-Gupta B, Delgado-Rodríguez O, Del Angel Ríos A, Martínez-Villegas N (2020) Alluvial and gypsum karst geological transition favors spreading arsenic contamination in Matehuala Mexico. Sci Total Environ 707:1–12. https://doi.org/10.1016/j.scitotenv.2019.135340

    Article  CAS  Google Scholar 

  • Graf DL (1961) Crystallographic tables for the rhombohedral carbonates. Am Miner 46(11–12):1283–1316

    CAS  Google Scholar 

  • Gutiérrez-Ruíz M, Villalobos M, Romero F, Fernández-Lomelín P (2006) Natural attenuation of arsenic in semiarid soils contaminated by oxidized arsenic wastes. ACS Symp Ser 915:235–252

    Article  Google Scholar 

  • Hafeznezami S, Zimmer-Faust AG, Jun D, Rugh MB, Haro HL, Park A, Suh J, Najm T, Reynolds MD, Davis JA, Parhizkar T, Jay JA (2017) Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: batch and column studies. Water Res 122:545–556. https://doi.org/10.1016/j.watres.2017.06.029

    Article  CAS  Google Scholar 

  • Haffert L, Craw D (2008) Processes of attenuation of dissolved arsenic downstream from historic gold mine sites. N Z Sci Total Environ 405:286–300. https://doi.org/10.1016/j.scitotenv.2008.06.058

    Article  CAS  Google Scholar 

  • Hagni AM, Hagni RD (1994) Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing. 26

  • Hao J, Han M-J, Han S, Meng X, Su T-L, Wang QK (2015) SERS detection of arsenic in water: a review. J Environ Sci 36:152–162. https://doi.org/10.1016/j.jes.2015.05.013

    Article  CAS  Google Scholar 

  • Helgeson HC, Kirkham DH (1974) Chemical prediction of the thermodynamic behavior of aqueous temperatures. Am J Sci 274:1089–1198. https://doi.org/10.2475/ajs.274.10.1089

    Article  CAS  Google Scholar 

  • Hillel D (2008) Soil formation. Soil in the environment. Science Publishers Inc, pp 15–26

    Chapter  Google Scholar 

  • Hird R, Bolton MD (2017) Clarification of capillary rise in dry sand. Eng Geol 230:77–83. https://doi.org/10.1016/j.enggeo.2017.09.023

    Article  Google Scholar 

  • Larios R, Fernández-Martínez R, Rucandio I (2012) Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments. Anal Bioanal Chem 402:2909–2921. https://doi.org/10.1007/s00216-012-5730-3

    Article  CAS  Google Scholar 

  • Lin Z, Puls RW (2000) Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ Geol 39:753–759. https://doi.org/10.1007/s002540050490

    Article  CAS  Google Scholar 

  • Magalhaes MCF, Pedrosa de Jesús JD, Williams PA (1988a) The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Miner Mag 52:679–690

    Article  CAS  Google Scholar 

  • Magalhaes MCF, Pedrosa de Jesus JD, Williams PA (1988b) The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Miner Mag 52:679–690. https://doi.org/10.1180/minmag.1988.052.368.12

    Article  CAS  Google Scholar 

  • Magalhães MCF (2002) Arsenic. An environmental problem limited by solubility. Pure Appl Chem 74:1843–1850. https://doi.org/10.1351/pac200274101843

    Article  Google Scholar 

  • Manning BA, Fendorf SE, Goldberg S (1998) Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environ Sci Technol 32:2383–2388. https://doi.org/10.1021/es9802201

    Article  CAS  Google Scholar 

  • Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castañón-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122. https://doi.org/10.1016/j.envpol.2012.12.025

    Article  CAS  Google Scholar 

  • Meunier L, Walker SR, Wragg J, Parsons MB, Koch I, Jamieson HE, Reimer KJ (2010) Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environ Sci Technol 44:2667–2674. https://doi.org/10.1021/es9035682

  • Mihajlov I, Mozumder MRH, Bostick BC, Stute M, Mailloux BJ, Knappett PSK, Choudhury I, Ahmed KM, Schlosser P, van Geen A (2020) Arsenic contamination of Bangladesh aquifers exacerbated by clay layers. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-16104-z

    Article  CAS  Google Scholar 

  • Mitchell VL (2014) Health risks associated with chronic exposures to arsenic in the environment. In: Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J (eds.) Arsenic: environmental geochemistry, mineralogy, and microbiology. pp 435–449

  • Muller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672. https://doi.org/10.1016/j.watres.2010.05.053

    Article  CAS  Google Scholar 

  • Niazi N, Singh B, Shah P (2011) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142. https://doi.org/10.1021/es201677z

  • Nishimura T, Robins RG (1998) A re-evaluation of the solubility and stability regions of calcium arsenites and calcium arsenates in aqueous solution at 25 °C. Miner Process Extr Metall Rev 18:283–308. https://doi.org/10.1080/08827509808914159

    Article  CAS  Google Scholar 

  • Nordstrom DK, Majzlan J, Königsberger E (2014) Thermodynamic properties for arsenic minerals and aqueous species. Rev Miner Geochem 79:217–255. https://doi.org/10.2138/rmg.2014.79.4

    Article  Google Scholar 

  • O’Reilly SEE, Strawn DG, Sparks DL (2001) Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J 65:67. https://doi.org/10.2136/sssaj2001.65167x

    Article  Google Scholar 

  • Palumbo-Roe B, Klinck B, Cave M (2007) Arsenic speciation and mobility in mine wastes from a copper-arsenic mine in Devon, UK: a SEM, XAS, sequential chemical extraction study. Arsen Soil Groundw Environ Biogeochem Interact Heal Eff Remediat 9:441–471. https://doi.org/10.1016/S0927-5215(06)09017-5

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo T (1999) User’s guide to PHREEQC version 3 - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, Colorado

  • Ravenscroft P, Brammer H, Richards K, Consultant I, Brammer H (2009) Arsenic pollution: a global synthesis, 1st edn. Wiley-Blackwell, Singapur

    Book  Google Scholar 

  • Richter P, Seguel R, Ahumada I, Verdugo R, Narvaez J, Shibata Y (2004) Arsenic speciation in environmental samples of a mining impacted sector of central Chile. J Chil Chem Soc 49:333–339

    CAS  Google Scholar 

  • Rodríguez-Blanco JD, Jiménez A, Prieto M (2007) Oriented overgrowth of pharmacolite (CaHAsO4·2H2O) on gypsum (CaSO4·2H2O). Cryst Growth Des 7:2756–2763. https://doi.org/10.1021/cg070222+

    Article  CAS  Google Scholar 

  • Rodríguez-Blanco JD, Jiménez A, Prieto M, Torre L, García-Granda S (2008) Interaction of gypsum with As(V)-bearing aqueous solutions: surface precipitation of guerinite, sainfeldite, and Ca2NaH (AsO4)2·6H2O, a synthetic arsenate. Am Miner 93:928–939. https://doi.org/10.2138/am.2008.2750

    Article  CAS  Google Scholar 

  • Román-Ross G, Cuello GJ, Turrillas X, Fernández-Martínez A, Charlet L (2006) Arsenite sorption and co-precipitation with calcite. Chem Geol 233:328–336. https://doi.org/10.1016/j.chemgeo.2006.04.007

    Article  CAS  Google Scholar 

  • Romero FM, Armienta MA, Carrillo-Chavez A (2004) Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán. México Arch Environ Contam Toxicol 47:1–13

    CAS  Google Scholar 

  • Roussel C, Néel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci Total Environ 263:209–219. https://doi.org/10.1016/S0048-9697(00)00707-5

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430. https://doi.org/10.1021/es950057z

  • Rühlmann J, Körschens M, Graefe J (2006) A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix. Geoderma 130:272–283

    Article  Google Scholar 

  • Schjønning P, McBride RA, Keller T, Obour PB (2017) Predicting soil particle density from clay and soil organic matter contents. Geoderma 286:83–87. https://doi.org/10.1016/j.geoderma.2016.10.020

    Article  CAS  Google Scholar 

  • Schoeneberger PJ, Wysocki DA, Benham EC, Staff SS, (2012) Field book for describing and sampling soils, Version 3.0. National Soil Survey Center, Natural Resources Conservation Service, Lincoln, NE

    Google Scholar 

  • SEMARNAT, (2004) NOM-147-SEMARNAT-SSA1-2004. SEMARNAT/SSA1, México, Mexico

  • Sposito G (2008) The chemistry of soils, 2nd edn. Oxford University Press, New York, USA

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction techniques for the speciation of particulate trace metals. Anal Chem 51:844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Thanabalasingam P, Pickering WF (1986) Arsenic sorption by humic acids. Environ Pollut Ser B Chem Phys 12:233–246. https://doi.org/10.1016/0143-148X(86)90012-1

    Article  CAS  Google Scholar 

  • USDA (2013) Munsell Soil Color Book. Munsell Color X-rite, EEUU

  • USEPA (2007) Method 6200. Field portable X-Ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. United States Environmental Protection Agency United States Environmental Protection Agency, Washington

    Google Scholar 

  • Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V (2003) Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut 122:323–342. https://doi.org/10.1016/S0269-7491(02)00332-9

    Article  Google Scholar 

  • Vigneshwaran S, Sirajudheen P, Karthikeyan P, Nikitha M, Ramkumar K, Meenakshi S (2020) Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates. J Hazard Mater 406:1–22. https://doi.org/10.1016/j.jhazmat.2020.124728

    Article  CAS  Google Scholar 

  • Villalobos M, Garcia-Payne DG, Lopez-Zepeda JL, Ceniceros-Gomez AE, Gutierrez-Ruiz ME, García-Payne DG, López-Zepeda JL, Ceniceros-Gómez AE, Gutiérrez-Ruiz ME (2010) Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: I. Wet chemical and thermodynamic evidences. Aquat Geochem 16:225–250. https://doi.org/10.1007/s10498-009-9065-4

    Article  CAS  Google Scholar 

  • Violante A, Barberis E, Pigna M, Boero V (2003) Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. J Plant Nutr 26:1889–1908. https://doi.org/10.1081/PLN-120024252

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28:197–214. https://doi.org/10.1007/s10653-005-9032-y

    Article  CAS  Google Scholar 

  • Zahid A, Hassan MQ, Breit GN, Balke KD, Flegr M (2009) Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh. Environ Geochem Health 31:69–84. https://doi.org/10.1007/s10653-008-9226-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper and the research behind it would not have been possible without the exceptional support of the National Laboratory for Research in Nanosciences and Nanotechnology (LINAN), the Petrophysics and Petrography laboratory, the Geophysics laboratory both of the Applied Geosciences Division, the Stable Isotope Laboratory of the Environmental Sciences Division all of IPICYT, to Mtr. Beatriz Adriana Rivera Escoto, to Mtr. Ana Iris Peña Maldonado, Mtra. María Mercedes Zavala Arriaga, and Mtra. Alejandra Colunga Álvarez. This research was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT; Grants No. CB-2012–183025 and 7073) and the Royal Society (Grant No. NA 140182). NVM is thankful to British Council-COPOCYT for

Author information

Authors and Affiliations

Authors

Contributions

AG-H contributed to conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization, and supervision. JLH-M contributed to methodology, writing—review and editing, visualization, and supervision. JACdA contributed to writing—original draft and writing—review and editing. DMF contributed to writing—original draft and writing—review and editing. NM-V contributed to formal analysis, investigation, resources, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Andrea Gómez-Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2534 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Hernández, A., Martínez-Villegas, N., Hernández-Martínez, J.L. et al. Unraveling the Role of Capillarity in Arsenic Mobility: Insights from a Sedimentary–Karstic Aquifer in Semiarid Soil. Aquat Geochem (2024). https://doi.org/10.1007/s10498-024-09422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10498-024-09422-x

Keywords

Navigation