Skip to main content

Advertisement

Log in

Reduction Rates of Sedimentary Mn and Fe Oxides: An Incubation Experiment with Arctic Ocean Sediments

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

To test the hypothesis that manganese- and iron-reducing bacteria in marine sediments respond rapidly to seasonal pulses of fresh organic carbon settling to the sea floor, we amended wet metal oxide–rich and metal oxide–poor sediments from the Beaufort Sea, Canadian Arctic, with organic carbon in the form of shrimp powder and incubated them at room temperature. Neither Mn nor Fe was released to the aqueous phase from unamended metal oxide–rich sediment during a 41-day incubation, but both elements were released from sediment aliquots amended with organic carbon. Dissolved Mn appeared in the aqueous phase after a lag period of 2 days or less and reached levels as high as 600 μmol l−1 before levelling out. The release of dissolved Mn was accompanied by a decrease in the concentration of solid-phase reducible Mn. Dissolved Fe did not appear until 2 weeks into the incubation and only after the concentration of dissolved Mn had levelled out. For low concentrations of amended organic carbon (0.3%), the kinetics of Mn reduction fit a second-order rate law with a rate constant k = 2 × 10−3 g μmol−1 day−1, but at intermediate and high organic carbon concentrations (0.7 and 1.3%), the reduction kinetics was better described by a pseudo-first-order rate law with a rate constant k′ = 1.6 × 10−1 day−1. A pulse of organic carbon settling to the sea floor can trigger reduction of Mn and Fe oxides within a few days in strongly seasonal sedimentary environments, such as in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aller RC (1980) Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn. Adv Geophys 22:351–415

    Article  Google Scholar 

  • Aller RC (1990) Bioturbation and manganese cycling in hemipelagic sediments. Philos Trans R Soc A 331(1616):51–68

    Article  Google Scholar 

  • Anschutz P, Dedieu K, Desmazes F, Chaillou G (2005) Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. Chem Geol 218(3–4):265–279. doi:10.1016/j.chemgeo.2005.01.008

    Article  Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35(19):L19603, 6pp. doi:10.1029/2008gl035028

  • Beaulieu SE (2002) Accumulation and fate of phytodetritus on the sea floor. Oceanogr Mar Biol 40:171–232

    Google Scholar 

  • Berg P, Rysgaard S, Thamdrup B (2003) Dynamic modeling of early diagenesis and nutrient cycling. A case study in an Arctic marine sediment. Am J Sci 303(10):905–955

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation—an update. Geochim Cosmochim Act 48(4):605–615

    Article  Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL, Mantoura RFC (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522

    Article  Google Scholar 

  • Boudreau BP (1996) A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Comput Geosci 22(5):479–496

    Article  Google Scholar 

  • Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, Princeton, p 609

    Google Scholar 

  • Burdige DJ, Gieskes JM (1983) A pore water solid-phase diagenetic model for manganese in marine sediments. Am J Sci 283(1):29–47

    Article  Google Scholar 

  • Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53(3):619–632

    Article  Google Scholar 

  • Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993a) Pathways of organic-carbon oxidation in 3 continental-margin sediments. Mar Geol 113(1–2):27–40

    Article  Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993b) The anaerobic degradation of organic-matter in Danish coastal sediments - iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57(16):3867–3883

    Article  Google Scholar 

  • Chaillou G, Schafer J, Anschutz P, Lavaux G, Blanc G (2003) The behaviour of arsenic in muddy sediments of the bay of Biscay (France). Geochim Cosmochim Acta 67(16):2993–3003. doi:10.1016/s0016-7037(03)00204-7

    Article  Google Scholar 

  • Dhakar SP, Burdige DJ (1996) Coupled, non-linear, steady state model for early diagenetic processes in pelagic sediments. Am J Sci 296(3):296–330

    Article  Google Scholar 

  • Dollhopf ME, Nealson KH, Simon DM, Luther GW (2000) Kinetics of Fe(III) and Mn(IV) reduction by the black sea strain of Shewanella putrefaciens using in situ solid state voltammetric Au/Hg electrodes. Mar Chem 70(1–3):171–180

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial atlantic - suboxic diagenesis. Geochim Cosmochim Acta 43(7):1075–1090

    Article  Google Scholar 

  • Gihring TM, Humphrys M, Mills HJ, Huettel M, Kostka JE (2009) Identification of phytodetritus-degrading microbial communities in sublittoral gulf of mexico sands. Limnol Oceanogr 54(4):1073–1083

    Article  Google Scholar 

  • Gobeil C, Macdonald RW, Sundby B (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim Cosmochim Acta 61(21):4647–4654

    Article  Google Scholar 

  • Gobeil C, Sundby B, Macdonald RW, Smith JN (2001) Recent change in organic carbon flux to Arctic Ocean deep basins: Evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys Res Lett 28(9):1743–1746

    Article  Google Scholar 

  • Graf G (1989) Benthic–pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Article  Google Scholar 

  • Howarth RW, Jorgensen BB (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing fjord, Denmark) during short term 35SO4 2− reduction measurements. Geochim Cosmochim Acta 48(9):1807–1818

    Article  Google Scholar 

  • Hyacinthe C, Bonneville S, Van Cappellen P (2006) Reactive iron(III) in sediments: chemical versus microbial extractions. Geochim Cosmochim Acta 70(16):4166–4180. doi:10.1016/j.gca.2006.05.018

    Article  Google Scholar 

  • Jensen MM, Thamdrup B, Rysgaard S, Holmer M, Fossing H (2003) Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry 65(3):295–317

    Article  Google Scholar 

  • Katsev S, Sundby B, Mucci A (2006) Modeling vertical excursions of the redox boundary in sediments: application to deep basins of the Arctic Ocean. Limnol Oceanogr 51(4):1581–1593

    Article  Google Scholar 

  • Kostka J, Luther G (1994) Partitioning and speciation of solid phase iron in salt-marsh sediments. Geochim Cosmochim Acta 58(7):1701–1710

    Article  Google Scholar 

  • Kostka JE, Thamdrup B, Glud RN, Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21

    Article  Google Scholar 

  • Lampitt RS (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res I 32:885–897

    Article  Google Scholar 

  • Lavoie D, MacDonald RW, Denman KL (2009) Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study. J Mar Sys 75(1–2):17–32. doi:10.1016/j.jmarsys.2008.07.007

    Article  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microb 51(4):683–689

    Google Scholar 

  • Magen C, Chaillou G, Crowe SA, Mucci A, Sundby B, Gao AG, Makabe R, Sasaki H (2010) Origin and fate of particulate organic matter in the southern Beaufort Sea—Amundsen Gulf region, Canadian Arctic. Estuar Coast Shelf Sci 86(1):31–41. doi:10.1016/j.ecss.2009.09.009

    Article  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  Google Scholar 

  • Mucci A (2004) The behavior of mixed Ca-Mn carbonates in water and seawater: controls on manganese concentrations in marine pore waters. Aquat Geochem 10:139–169

    Article  Google Scholar 

  • Mucci A, Sundby B, Gehlen M, Arakaki T, Zhong S, Silverberg N (2000) The fate of carbon in continental shelf sediments of eastern Canada: a case study. Deep-Sea Res II 47:733–760

    Article  Google Scholar 

  • Mucci A, Boudreau B, Guignard C (2003) Diagenetic mobility of trace elements in sediments covered by a flash flood deposit: Mn, Fe and As. Appl Geochem 18(7):1011–1026

    Article  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321

    Article  Google Scholar 

  • Roden EE (2003) Fe(III) oxide reactivity toward biological versus chemical reduction. Environ Sci Technol 37(7):1319–1324. doi:10.1021/es026038o

    Article  Google Scholar 

  • Roden EE (2004) Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics. Geochim Cosmochim Acta 68(15):3205–3216. doi:10.1016/j.gca.2004.03.028

    Article  Google Scholar 

  • Roden EE, Wetzel RG (2002) Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnol Oceanogr 47(1):198–211

    Article  Google Scholar 

  • Slomp CP, Malschaert JFP, Lohse L, Van Raaphorst W (1997) Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Cont Shelf Res 17(9):1083–1117

    Article  Google Scholar 

  • Soetaert K, Herman PMJ, Middelburg JJ (1996) A model of early diagenetic processes from the shelf to abyssal depths. Geochim Cosmochim Acta 60(6):1019–1040

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic Chemistry. Chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Sundby B (2006) Transient state diagenesis in continental margin muds. Mar Chem 102(1–2):2–12. doi:10.1016/j.marchem.2005.09.016

    Article  Google Scholar 

  • Sundby B, Silverberg N (1985) Manganese fluxes in the benthic boundary layer. Limnol Oceanogr 30:374–382

    Article  Google Scholar 

  • Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41(8):1629–1650

    Article  Google Scholar 

  • Thamdrup B, Dalsgaard T (2000) The fate of ammonia in anoxic manganese oxide-rich marine sediment. Geochim Cosmochim Acta 64(24):4157–4164

    Article  Google Scholar 

  • Van Cappellen P, Wang YF (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296(3):197–243

    Article  Google Scholar 

  • Vandieken V, Finke N, Jorgensen BB (2006) Pathways of carbon oxidation in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant Fe(III)-reducing bacteria. Mar Ecol Prog Ser 322:29–41

    Article  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction—the G model tested. Limnol Oceanogr 29(2):236–249

    Article  Google Scholar 

  • Witte U et al (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766

    Article  Google Scholar 

Download references

Acknowledgments

This study is a contribution to the Canadian Arctic Shelf Exchange Study (CASES) and was funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). C.M. acknowledges scholarships from NSERC, the Department of Earth and Planetary Sciences at McGill University, and the GEOTOP Research Center. GEOTOP is funded by a grant from the Fonds Québecois de la Recherche sur la Nature et les Technologies (FQRNT). We thank the crew of the CCGS Amundsen for their impeccable assistance at sea. We also thank David Burdige and Joel Kostka for their insightful comments on an earlier version of the manuscript. Finally, we dedicate this paper to the memory of John W. Morse, a mentor and friend to A.M. and an inspiration to all of us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Magen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magen, C., Mucci, A. & Sundby, B. Reduction Rates of Sedimentary Mn and Fe Oxides: An Incubation Experiment with Arctic Ocean Sediments. Aquat Geochem 17, 629–643 (2011). https://doi.org/10.1007/s10498-010-9117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-010-9117-9

Keywords

Navigation