Skip to main content

Advertisement

Log in

Mineral Weathering in a Semiarid Mountain River: Its assessment through PHREEQC inverse modeling

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

By means of PHREEQC inverse modeling, we have simulated the weathering reactions in Los Reartes River, a mountainous (2400–670 m a.s.l.) drainage basin from the Sierras Pampeanas of Córdoba, Argentina, analyzing the effect of lithology, relief, and climate. The steep upper half of the basin (slopes > 20) is occupied by exposed granite; the remaining area is mostly metamorphic, with cropping out gneisses and progressively decreasing slopes (< 6). Climate is semihumid to semiarid; rainfall mainly occurs in summer and decreases with decreasing height. PHREEQC inverse models developed using water chemical data showed that (a) oligoclase was the major supplier of solutes, while the main precipitated phase was kaolinite in the granite domain; (b) muscovite is the chief supplier of solutes and illite is the main precipitated phase in the gneissic realm; (c) the steeper portions of the metamorphic reach are less crucial in supplying solutes than the lower ones, thus highlighting the importance of the water residence time in the kinetics of dissolution; (d) in the driest time of the year (winter, 20 mm/month) we registered the highest production of dissolved and precipitated phases; fluxes (mmol/month), however, are higher at the end of the rainy season; (e) CO2 consumption is important all along the Los Reartes drainage basin and, in terms of mmol/kg H2O, the lowermost portion of the basin is the most significant supplier; (f) CO2 accounts for over 50 of all the species involved in the weathering reactions occurring at the Los Reartes drainage basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.A. Becker H. Bugmann (2001) Global Change and Mountain Regions The Mountain Research Initiative IGBP Report 49 Royal Swedish Academy of Sciences, Stockholm 88

    Google Scholar 

  • A. Bonalumi R. Martino E. Baldo J. Zarco J. Sfragulla C. Carignano P. Kraemer M. Escayola A. Tauber (1999) Hoja Geológica 3166-IV (Villa Dolores) SEGEMAR Buenos Aires, Argentina

    Google Scholar 

  • Capitanelli R.G. (1979) Clima. In Geografía Física de Córdoba (eds. J. B.Vásquez et al.), Chapter 3, pp. 45–138. Boldt Press, Córdoba, Argentina.

  • Cioccale M. (1999) Investigación geomorfológica de cuencas serranas. Estudio geomorfológico integral: morfodinámica, morfometría y morfogénesis del flanco oriental de las Sierras Chicas de Córdoba. Doctoral Thesis, Universidad Nacional, Córdoba, Argentina, 121 pp.

  • Demange M., Alvarez J., Lopez L. and Zarco J. (1993) Existencia de series magmáticas diferentes en el Batolito de Achala, Córdoba. 12°Congreso Geológico Argentino y 2°Congreso de Exploración de Hidrocarburos, Mendoza, Argentina, Vol.1 pp. 23–29.

  • M. Demange J.O. Alvarez L. López J. Zarco (1996) ArticleTitleThe Achala Batholith (Córdoba, Argentina): a composite intrusion made of five independent magmatic suites Magmatic evolution and deuteric alteration. J. South Am. Earth Sci. 9 11–25 Occurrence Handle10.1016/0895-9811(96)00024-7

    Article  Google Scholar 

  • J.I. Drever (1997) The Geochemistry of Natural Waters. Surface and Groundwater Environments Prentice Hall New Jersey

    Google Scholar 

  • L.E. Eary D.D. Runnels K.J. Esposito (2003) ArticleTitleGeochemical control on ground water composition at the Cripple Creek Mining District, Cripple Creek, Colorado Appl. Geochem. 18 1–24 Occurrence Handle10.1016/S0883-2927(02)00049-5 Occurrence Handle1:CAS:528:DC%2BD38XoslKru70%3D

    Article  CAS  Google Scholar 

  • Gardini C.E., Costa C.H. and Schmidt C.J. (1996) Inversión tectónica en el sector Sierra del Gigante Alto Pencoso, San Luis. 13° Congreso Geológico Argentino, Buenos Aires, Vol. 2, pp. 267–282.

  • Guereschi A. and Baldo E. (1993) Petrología y geoquímica de las rocas metamórficas del sector centro-oriental de la Sierra de Comechingones, Córdoba. 12°Congreso Geológico Argentino y 2°Congreso de Exploración de Hidrocarburos, Mendoza, Argentina, Vol. 1, pp. 1–5.

  • R. Horton (1945) ArticleTitleErosional development of streams in their drainage basins Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56 257–370

    Google Scholar 

  • R. Lira A.M. Kirschbaum (1990) ArticleTitleGeochemical evolution of granites from Achala Batholith of the Sierras Pampeanas, Argentina Geol. Soc. Am., Special Paper 241 67–75

    Google Scholar 

  • D.L. Parkhurst (1995) Users’s Guide to PHREEQC – A Computer Program for Speciation Reaction-path, Advective-transport, and Inverse Geochemical Calculations Water Resources Investigation Report 95-4227, US Geological Survey Lakewood, Colorado

    Google Scholar 

  • Pasquini A.I., Lecomte K.L. and Depetris P.J. (2004) Geoquímica de ríos de montaña en las Sierras Pampeanas: II. El río Los Reartes, Sierra de Comechingones, Provincia de Córdoba, Argentina. Rev. Asoc. Geol. Arg. 129–140.

  • J.E. Piccolo (2003) Balance Hídrico Superficial en la Cuenca y el Embalse Los Molinos, Córdoba, Argentina Tesina, Universidad Nacional de Córdoba Argentina 290

    Google Scholar 

  • A.M. Piper (1944) ArticleTitleA graphic procedure in the geochemical interpretation of water analyses Am. Geophys. Union Trans. 25 914–923

    Google Scholar 

  • Ramos V.A. (1999) Las Provincias Geológicas del Territorio Argentino. In Geología Argentina(ed. Caminos R.) Chapter 3, pp. 41–96. Instituto de Geología y Recursos Minerales, SEGEMAR, Buenos Aires, Argentina.

  • Ruddiman W. F. (ed.). (1997) Tectonic Uplift and Climate Change. Plenum Press, New York.

  • J. Smith D. Vance R.A. Kemp C. Archer P. Toms M. King M. Zárate (2003) ArticleTitleIsotopic constraints on the source of Argentinian loess with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima Earth Planet. Sci. Let. 212 181–196 Occurrence Handle10.1016/S0012-821X(03)00260-7 Occurrence Handle1:CAS:528:DC%2BD3sXkvFyrsr4%3D

    Article  CAS  Google Scholar 

  • R.F. Stallard J.M. Edmond (1981) ArticleTitleGeochemistry of the Amazon 1 Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res. 86 9844–9858 Occurrence Handle1:CAS:528:DyaL3MXmtV2hs78%3D

    CAS  Google Scholar 

  • A.N. Strahler (1952) ArticleTitleDynamic bases of geomorphology Geol. Soc. Am. Bull. 63 923–938

    Google Scholar 

  • W. Stumm J.J. Morgan (1996) Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters. Wiley-Interscience New York

    Google Scholar 

  • M.M. Uliana J.M. Sharp (2001) ArticleTitleTracing regional flow paths to major springs in Trans-Pecos Texas using geochemical data and geochemical models Chem. Geol. 179 53–72 Occurrence Handle10.1016/S0009-2541(01)00315-1 Occurrence Handle1:CAS:528:DC%2BD3MXltlGgtbo%3D

    Article  CAS  Google Scholar 

  • E. Wohl (2000) Mountain Rivers American Geophysical Union Washington, DC

    Google Scholar 

Download references

Acknowledgments

This investigation has been partially financed by the office for science and technology (SECYT) of the Universidad Nacional de Córdoba (Córdoba, Rep. Argentina), and by Argentina’s FONCYT 2000–2001, PICT No. 07-08524. We are indebted to DIPAS (Dirección Provincial de Agua y Saneamiento of Córdoba, Argentina), which provided rainfall data, and to Laboratorio de Hidráulica, Universidad Nacional de Córdoba, which supplied Los Reartes River discharge data. K.L.L. is a doctoral grantee, and A.I.P and P.J.D. are members of CICyT, both in Argentina’s CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina L. Lecomte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecomte, K.L., Pasquini, A.I. & Depetris, P.J. Mineral Weathering in a Semiarid Mountain River: Its assessment through PHREEQC inverse modeling. Aquat Geochem 11, 173–194 (2005). https://doi.org/10.1007/s10498-004-3523-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-004-3523-9

Keywords

Navigation