Skip to main content

Advertisement

Log in

EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wang W, Wei C (2020) Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis 7:308–319. https://doi.org/10.1016/j.gendis.2020.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  3. Qin S, Bi F, Gu S et al (2021) Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial. J Clin Oncol 39:3002–3011. https://doi.org/10.1200/JCO.21.00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verset G, Borbath I, Karwal M et al (2022) Pembrolizumab monotherapy for previously untreated advanced hepatocellular carcinoma: data from the open-label, phase II KEYNOTE-224 trial. Clin Cancer Res 28:2547–2554. https://doi.org/10.1158/1078-0432.CCR-21-3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordan JD, Kennedy EB, Abou-Alfa GK et al (2020) Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol 38:4317–4345. https://doi.org/10.1200/JCO.20.02672

    Article  CAS  PubMed  Google Scholar 

  6. Pinter M, Peck-Radosavljevic M (2018) Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol Ther 48:598–609. https://doi.org/10.1111/apt.14913

    Article  PubMed  PubMed Central  Google Scholar 

  7. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127

    Article  CAS  PubMed  Google Scholar 

  8. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. The Lancet 391:1301–1314. https://doi.org/10.1016/S0140-6736(18)30010-2

    Article  Google Scholar 

  9. Tohyama O, Matsui J, Kodama K et al (2014) Antitumor activity of Lenvatinib (E7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014:1–13. https://doi.org/10.1155/2014/638747

    Article  CAS  Google Scholar 

  10. Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 391:1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1

    Article  CAS  Google Scholar 

  11. Llovet JM, Montal R, Sia D, Finn RS (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15:599–616. https://doi.org/10.1038/s41571-018-0073-4

    Article  PubMed  Google Scholar 

  12. Lu Y, Shen H, Huang W et al (2021) Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 7:359. https://doi.org/10.1038/s41420-021-00747-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tao M, Han J, Shi J et al (2023) Application and resistance mechanisms of lenvatinib in patients with advanced hepatocellular carcinoma. J Hepatocell Carcinoma 10:1069–1083. https://doi.org/10.2147/JHC.S411806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buttell A, Qiu W (2023) The action and resistance mechanisms of Lenvatinib in liver cancer. Mol Carcinog 62:1918–1934. https://doi.org/10.1002/mc.23625

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Wang B, Xu Q et al (2021) TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53. Mol Cell Biochem 476:1151–1163. https://doi.org/10.1007/s11010-020-03979-1

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Li G, Qu L et al (2016) TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death. Cell Death Dis 7:e2323–e2323. https://doi.org/10.1038/cddis.2016.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang Y, Li Y, Hu J et al (2013) Adenovirus vector-mediated expression of TMEM166 inhibits human cancer cell growth by autophagy and apoptosis in vitro and in vivo. Cancer Lett 328:126–134. https://doi.org/10.1016/j.canlet.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  18. Shen X, Kan S, Liu Z et al (2017) EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis. Exp Cell Res 352:130–138. https://doi.org/10.1016/j.yexcr.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  19. Zhen Y, Yuan Z, Zhang J et al (2022) Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer. Cell Death Dis 13:375. https://doi.org/10.1038/s41419-022-04823-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhen Y, Zhao R, Wang M et al (2020) Flubendazole elicits anti-cancer effects via targeting EVA1A-modulated autophagy and apoptosis in Triple-negative Breast Cancer. Theranostics 10:8080–8097. https://doi.org/10.7150/thno.43473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu Q, Liao Z, Gong Z et al (2022) Down-regulation of EVA1A by miR-103a-3p promotes hepatocellular carcinoma cells proliferation and migration. Cell Mol Biol Lett 27:93. https://doi.org/10.1186/s11658-022-00388-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren W-W, Li D-D, Chen X et al (2018) MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis 9:547. https://doi.org/10.1038/s41419-018-0592-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Zhao W, Chen S et al (2024) Bioactive electrospun nanoyarn-constructed textile dressing patches delivering Chinese herbal compound for accelerated diabetic wound healing. Mater Des 237:112623. https://doi.org/10.1016/j.matdes.2023.112623

    Article  CAS  Google Scholar 

  24. Liu X, He M, Li L et al (2021) EMT and cancer cell stemness associated with chemotherapeutic resistance in esophageal cancer. Front Oncol 11:672222. https://doi.org/10.3389/fonc.2021.672222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan G, Liu Y, Shang L et al (2021) EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun 41:199–217. https://doi.org/10.1002/cac2.12138

    Article  Google Scholar 

  26. Kichi ZA, Soltani M, Rezaei M et al (2022) The emerging role of EMT-related lncRNAs in therapy resistanceand their applications as biomarkers. Curr Med Chem 29:4574–4601. https://doi.org/10.2174/0929867329666220329203032

    Article  CAS  PubMed  Google Scholar 

  27. Hou W, Bridgeman B, Malnassy G et al (2022) Integrin subunit beta 8 contributes to lenvatinib resistance in HCC. Hepatol Commun 6:1786–1802. https://doi.org/10.1002/hep4.1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meek DW, Hupp TR (2010) The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 20:19–28. https://doi.org/10.1016/j.semcancer.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  29. Levav-Cohen Y, Haupt S, Haupt Y (2005) Mdm2 in growth signaling and cancer: mini review. Growth Factors 23:183–192. https://doi.org/10.1080/08977190500196218

    Article  CAS  PubMed  Google Scholar 

  30. Malhotra L, Sharma S, Hariprasad G et al (2022) Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. Biochim Biophys Acta BBA - Mol Cell Res 1869:119343. https://doi.org/10.1016/j.bbamcr.2022.119343

    Article  CAS  Google Scholar 

  31. Wilcken R, Wang G, Boeckler FM, Fersht AR (2012) Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proc Natl Acad Sci 109:13584–13589. https://doi.org/10.1073/pnas.1211550109

  32. Vogel A, Qin S, Kudo M et al (2021) Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol 6:649–658. https://doi.org/10.1016/S2468-1253(21)00110-2

    Article  PubMed  Google Scholar 

  33. Sun W, Ma X-M, Bai J-P et al (2012) Transmembrane protein 166 expression in esophageal squamous cell carcinoma in Xinjiang, China. Asian Pac J Cancer Prev 13:3713–3716. https://doi.org/10.7314/APJCP.2012.13.8.3713

    Article  PubMed  Google Scholar 

  34. Tao M, Shi X-Y, Yuan C-H et al (2015) Expression profile and potential roles of EVA1A in normal and neoplastic pancreatic tissues. Asian Pac J Cancer Prev 16:373–376. https://doi.org/10.7314/APJCP.2015.16.1.373

    Article  PubMed  Google Scholar 

  35. Psyrri A, Arkadopoulos N, Vassilakopoulou M et al (2012) Pathways and targets in hepatocellular carcinoma. Expert Rev Anticancer Ther 12:1347–1357. https://doi.org/10.1586/era.12.113

    Article  CAS  PubMed  Google Scholar 

  36. Vara JÁF, Casado E, De Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204. https://doi.org/10.1016/j.ctrv.2003.07.007

    Article  CAS  Google Scholar 

  37. Liu R, Chen Y, Liu G et al (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11:797. https://doi.org/10.1038/s41419-020-02998-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982. https://doi.org/10.1038/ncb1101-973

    Article  CAS  PubMed  Google Scholar 

  39. Mayo LD, Dixon JE, Durden DL et al (2002) PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277:5484–5489. https://doi.org/10.1074/jbc.M108302200

    Article  CAS  PubMed  Google Scholar 

  40. Heerboth S, Housman G, Leary M et al (2015) EMT and tumor metastasis. Clin Transl Med 4:e6. https://doi.org/10.1186/s40169-015-0048-3

    Article  Google Scholar 

  41. Du B, Shim J (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21:965. https://doi.org/10.3390/molecules21070965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen T, You Y, Jiang H, Wang ZZ (2017) Epithelial–mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 232:3261–3272. https://doi.org/10.1002/jcp.25797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  44. Mak MP, Tong P, Diao L et al (2016) A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res 22:609–620. https://doi.org/10.1158/1078-0432.CCR-15-0876

    Article  CAS  PubMed  Google Scholar 

  45. Liang F, Ren C, Wang J et al (2019) The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis 8:59. https://doi.org/10.1038/s41389-019-0165-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Lei Y, Gao X et al (2013) p53 Attenuates the oncogenic Ras-induced epithelial–mesenchymal transition in human mammary epithelial cells. Biochem Biophys Res Commun 434:606–613. https://doi.org/10.1016/j.bbrc.2013.03.124

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Y, Xie X, Li Z et al (2011) Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition. Cancer Res 71:2959–2968. https://doi.org/10.1158/0008-5472.CAN-10-4077

    Article  CAS  PubMed  Google Scholar 

  48. Kim T, Veronese A, Pichiorri F et al (2011) p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883. https://doi.org/10.1084/jem.20110235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cano A, Diaz-Lopez A, Moreno-Bueno G (2014) Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 205. https://doi.org/10.2147/CMAR.S38156

  50. Parfenyev S, Singh A, Fedorova O et al (2021) Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 12:17. https://doi.org/10.1038/s41419-020-03327-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang S-P, Wang W-L, Chang Y-L et al (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704. https://doi.org/10.1038/ncb1875

    Article  CAS  PubMed  Google Scholar 

  52. Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635. https://doi.org/10.1016/j.cell.2017.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thapa N, Chen M, Horn HT et al (2020) Phosphatidylinositol 3-kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol 22:1357–1370. https://doi.org/10.1038/s41556-020-00596-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kapeller R, Chakrabarti R, Cantley L et al (1993) Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3’ kinase complexes: potential interactions with the microtubule cytoskeleton. Mol Cell Biol 13:6052–6063

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sato M, Ueda Y, Takagi T, Umezawa Y (2003) Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 5:1016–1022. https://doi.org/10.1038/ncb1054

    Article  PubMed  Google Scholar 

  56. Wang L, Yu C, Lu Y et al (2007) TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis. Apoptosis 12:1489–1502. https://doi.org/10.1007/s10495-007-0073-9

    Article  CAS  PubMed  Google Scholar 

  57. Li M, Lu G, Hu J et al (2016) EVA1A/TMEM166 regulates embryonic neurogenesis by autophagy. Stem Cell Rep 6:396–410. https://doi.org/10.1016/j.stemcr.2016.01.011

    Article  CAS  Google Scholar 

  58. Lam YK, Yu J, Huang H et al (2023) TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 78:727–740. https://doi.org/10.1002/hep.32802

    Article  CAS  PubMed  Google Scholar 

  59. Liao Z, Gong Z, Wang Z et al (2022) The degradation of TMEM166 by autophagy promotes AMPK activation to protect SH-SY5Y cells exposed to MPP+. Cells 11:2706. https://doi.org/10.3390/cells11172706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yingyu Chen from Peking University Health Science Center for providing us with EVA1A shRNA plasmids.

Funding

This research was funded by National Natural Science Foundation of China (grant number 81600470) and Natural Science Foundation of Shandong Province (grant number ZR2022MC053).

Author information

Authors and Affiliations

Authors

Contributions

Xiaokun Liu designed and performed the experiments, analyzed data, wrote the initial manuscript, and conducted bioinformatics analysis. Xiao Gao and Di Yang performed animal experiments. Yuling Yang analyzed the clinical samples. Xiao Gao, Di Yang, Lianhui Li, Shunlong Liu, Wanxin Cong helped to analyze data. Qingming Guo, Sen Lu, Lin Hou and Bin Wang helped to revise the draft. Ning Li conceived the study, organized, reviewed the manuscript, and made significant revisions to the draft. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ning Li.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of Medical College of the of Qingdao University under the project approval QDU-AEC-2023378 on Jul 18, 2023.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2002 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, X., Yang, Y. et al. EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01967-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01967-0

Keywords

Navigation