Skip to main content
Log in

Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ferroptosis, a nonapoptotic form of cell death marked by iron-dependent peroxidation of phospholipids, is associated with the occurrence and progression of tumors. Erastin, a selective inhibitor of the cystine/glutamate transporter system Xc, can induce the ferroptosis of cancer cells. Multiple myeloma (MM) has been reported to be insensitive to erastin-induced ferroptosis. However, we found the erastin sensitivity of different MM cells varied widely. Specifically, SLC7A11 abundance determined the sensitivity of MM cells to erastin-induced ferroptosis. MM cells expressing a high SLC7A11 level were more sensitive to erastin-induced ferroptosis than cells expressing a low level of SLC7A11. Moreover, the expression of SLC7A11 gradually increased with the progression of plasma cell dyscrasias. Survival analysis indicated that high levels of SLC7A11 predicted a poor prognosis for MM patients. Knocking down SLC7A11 expression significantly inhibited the proliferation of MM cells and induced ferroptotic cell death. Additionally, we revealed that the long noncoding RNA (lncRNA) SLC7A11-AS1 was a critical regulatory factor of SLC7A11 expression. SLC7A11-AS1 overexpression diminished SLC7A11 levels, leading to the ferroptosis of MM cells. In summary, our data show that heterogeneous SLC7A11 expression affects MM cell sensitivity to ferroptosis, providing a theoretical basis for improving the clinical treatment of MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study can be found in the article, Supplementary Information, or available from the corresponding author upon reasonable request.

Abbreviations

MM:

Multiple myeloma

GSH:

Glutathione

ROS:

Reactive oxygen species

SLC7A11:

Subunit solute carrier family 7 member 11

GPX4:

Glutathione peroxidase 4

OS:

Overall survival

PFS:

Progression-free survival

References

  1. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, Ren W, Yang Y (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25:1457–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849

    Article  CAS  PubMed  Google Scholar 

  6. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, ME, L. L. (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    Article  CAS  PubMed  Google Scholar 

  7. Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51:575-586.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown CW, Amante JJ, Goel HL, Mercurio AM (2017) The alpha6beta4 integrin promotes resistance to ferroptosis. J Cell Biol 216:4287–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6:e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  11. Neuse CJ, Lomas OC, Schliemann C, Shen YJ, Manier S, Bustoros M, Ghobrial IM (2020) Genome instability in multiple myeloma. Leukemia 34:2887–2897

    Article  PubMed  Google Scholar 

  12. Koppula P, Zhuang L, Gan B (2020) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. https://doi.org/10.1007/s13238-020-00789-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang Y, Dai Z, Barbacioru C, Sadee W (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Xia X, Huang P (2020) xCT: a critical molecule that links cancer metabolism to redox signaling. Mol Ther 28:2358–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koppula P, Zhang Y, Zhuang L, Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 38:12

    PubMed  Google Scholar 

  16. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185

    Article  CAS  PubMed  Google Scholar 

  17. Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinform 14:42–54

    Article  CAS  Google Scholar 

  18. Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Zabolian A, Tavakol S, Samarghandian S, Najafi M (2020) PD-1/PD-L1 axis regulation in cancer therapy: the role of long non-coding RNAs and microRNAs. Life Sci 256:117899

    Article  CAS  PubMed  Google Scholar 

  19. Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA (2021) Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00353-1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Izadirad M, Jafari L, James AR, Unfried JP, Wu ZX, Chen ZS (2021) Long noncoding RNAs have pivotal roles in chemoresistance of acute myeloid leukemia. Drug Discov Today. https://doi.org/10.1016/j.drudis.2021.03.017

    Article  PubMed  Google Scholar 

  21. Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinform 15:177–186

    Article  CAS  Google Scholar 

  22. Mizuno H, Kitada K, Nakai K, Sarai A (2009) PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. https://doi.org/10.1186/1755-8794-2-18

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Multiple Myeloma Research, C, Getz G, Golub TR (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vikova V, Jourdan M, Robert N, Requirand G, Boireau S, Bruyer A, Vincent L, Cartron G, Klein B, Elemento O, Kassambara A, Moreaux J (2019) Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics 9:540–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pullarkat V, Meng Z, Donohue C, Yamamoto VN, Tomassetti S, Bhatia R, Krishnan A, Forman SJ, Synold TW (2014) Iron chelators induce autophagic cell death in multiple myeloma cells. Leuk Res 38:988–996

    Article  CAS  PubMed  Google Scholar 

  27. Zhong Y, Tian F, Ma H, Wang H, Yang W, Liu Z, Liao A (2020) FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells. Life Sci 260:118077

    Article  CAS  PubMed  Google Scholar 

  28. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  29. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bazarbachi AH, Al Hamed R, Malard F, Harousseau JL, Mohty M (2019) Relapsed refractory multiple myeloma: a comprehensive overview. Leukemia 33:2343–2357

    Article  PubMed  Google Scholar 

  32. Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C (2020) Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 9:1569–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, Negri GL, von Karstedt S, Lockwood WW, Schaffer P, Leprivier G, Sorensen PH (2019) Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci USA 116:9433–9442

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Kajarabille N, Latunde-Dada GO (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci 20:4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, Decker AR, Sastra SA, Palermo CF, Andrade LR, Sajjakulnukit P, Zhang L, Tolstyka ZP, Hirschhorn T, Lamb C, Liu T, Gu W, Seeley ES, Stone E, Georgiou G, Manor U, Iuga A, Wahl GM, Stockwell BR, Lyssiotis CA, Olive KP (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Zhao Y, Li Y, Zhang R, Wang F, Wang T, Jiao Y (2020) The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther 13:5429–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40:248–256

    Article  CAS  PubMed  Google Scholar 

  38. Gil N, Ulitsky I (2020) Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21:102–117

    Article  CAS  PubMed  Google Scholar 

  39. Luo Y, Wang C, Yong P, Ye P, Liu Z, Fu Z, Lu F, Xiang W, Tan W, Xiao J (2017) Decreased expression of the long non-coding RNA SLC7A11-AS1 predicts poor prognosis and promotes tumor growth in gastric cancer. Oncotarget 8:112530–112549

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, Yang R, Xiao D, Cheng Y, Liu S, Zhou H, Cao Y, Yu W, Muegge K, Yu H, Tao Y (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res 78:3484–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y, Zhang B (2019) Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 26:2329–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research leading to these results has received funding from Natural Science Foundation of China (82270197, 82270211), The special project of “Technological innovation” project of CNNC Medical Industry Co. Ltd (ZHYLYB2021002), Natural Science Foundation of Jiangsu Province China (BK20201408).

Author information

Authors and Affiliations

Authors

Contributions

BL and WZ designed the research, and contributed reagents and other essential materials. WZ performed research, QL wrote the paper, YZ, ZW, SY, XZ, MZ modified the paper.

Corresponding authors

Correspondence to Wenzhuo Zhuang or Bingzong Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

The animal experimentation acquired permission from the ethics committee of Soochow university. All MM patient samples were collected from the Second Affiliated Hospital of Soochow University after receiving permission from the ethics committee of the second affiliated hospital of Soochow university. Informed written consent was obtained from each subject or each subject's guardian. The study was conducted in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 856 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, Q., Zhang, Y. et al. Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis. Apoptosis 29, 412–423 (2024). https://doi.org/10.1007/s10495-023-01909-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01909-2

Keywords

Navigation