Skip to main content

Advertisement

Log in

Identification and validation of a novel necroptosis-related molecular signature to evaluate prognosis and immune features in breast cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Necroptosis has been shown to play an important role in the development of tumors. However, the characteristics of the necroptosis-related subtypes and the associated immune cell infiltration in the tumor microenvironment (TME) of breast cancer (BRCA) remain unclear. In this study, we identified three clusters related to necroptosis using the expression patterns of necroptosis-relevant genes (NRGs), and found that these three clusters had different clinicopathological features, prognosis and immune cell infiltration in the TME. Cluster 2 was characterized by less infiltration of immune cells in the TME and was associated with a worse prognosis. Then, a necroptosis risk score (NRS) composed of 14 NRGs was constructed using the least absolute shrinkage and selection operator regression (LASSO) Cox regression method. Based on NRS, all BRCA patients in the TCGA datasets were classified into a low-risk group and a high-risk group. Patients in the low-risk group were characterized by longer overall survival (OS), lower mutation burden, and higher infiltration level of immune cells in the TME. Moreover, the NRS was significantly associated with chemotherapeutic drug sensitivity. Finally, the knockdown of VDAC1 reduced the proliferation and migration of BRCA cells, and promoted cell death induced by necroptosis inducer. This study identified a novel necroptosis-related subtype of BRCA, and a comprehensive analysis of NRGs in BRCA revealed its potential roles in prognosis, clinicopathological features, TME, chemotherapy, tumor proliferation, and tumor necroptosis. These results may improve our understanding of NRGs in BRCA and provide a reference for developing individualized therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used in this study can be found in the online repositories. The name of the repository has been written in the section of the materials and methods of the article.

References

  1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69:363–385

    Article  PubMed  Google Scholar 

  2. Harbeck N, Gnant M (2017) Breast cancer. Lancet 389:1134–1150

    Article  PubMed  Google Scholar 

  3. Goovaerts T, Steyaert S, Vandenbussche CA, Galle J, Thas O, Van Criekinge W, De Meyer T (2018) A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nat Commun 9:4120

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA et al (2018) The Immune Landscape of Cancer. Immunity 48:812–830e814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  6. Hockendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M et al (2016) RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of Leukemia initiating cells. Cancer Cell 30:75–91

    Article  PubMed  Google Scholar 

  7. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L, Koolen M, Nagata T et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Nunez G, Masters SL, Murphy JM, Schroder K, Vaux DL et al (2017) Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci U S A 114:E961–E969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seehawer M, Heinzmann F, D’Artista L, Harbig J, Roux PF, Hoenicke L, Dang H, Klotz S, Robinson L, Dore G et al (2018) Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 562:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18:100

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L, Kroemer G (2017) Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology 6:e1299302

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17:262–275

    Article  CAS  PubMed  Google Scholar 

  13. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  14. Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, Colleoni M, Regan MM, Piccart-Gebhart M, Senn HJ et al (2017) De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the primary therapy of early breast Cancer 2017. Ann Oncol 28:1700–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen B, Lai J, Dai D, Chen R, Li X, Liao N (2019) JAK1 as a prognostic marker and its correlation with immune infiltrates in breast cancer. Aging 11:11124–11135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdel-Fatah TMA, Agarwal D, Liu DX, Russell R, Rueda OM, Liu K, Xu B, Moseley PM, Green AR, Pockley AG et al (2016) SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol 17:1004–1018

    Article  CAS  PubMed  Google Scholar 

  17. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541

    Article  CAS  PubMed  Google Scholar 

  18. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype Relationships and Predictors of response to checkpoint blockade. Cell Rep 18:248–262

    Article  CAS  PubMed  Google Scholar 

  21. Ye Y, Dai Q, Qi H (2021) A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov 7:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  Google Scholar 

  23. Maeser D, Gruener RF, Huang RS (2021): oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform 22

  24. Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 15:199

    Article  PubMed  PubMed Central  Google Scholar 

  25. Galluzzi L, Kepp O, Chan FK, Kroemer G (2017) Necroptosis: mechanisms and relevance to Disease. Annu Rev Pathol 12:103–130

    Article  CAS  PubMed  Google Scholar 

  26. Jiao D, Cai Z, Choksi S, Ma D, Choe M, Kwon HJ, Baik JY, Rowan BG, Liu C, Liu ZG (2018) Necroptosis of tumor cells leads to tumor necrosis and promotes tumor metastasis. Cell Res 28:868–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nugues AL, El Bouazzati H, Hetuin D, Berthon C, Loyens A, Bertrand E, Jouy N, Idziorek T, Quesnel B (2014) RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis 5:e1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS et al (2015) Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25:707–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng X, Song Q, Yu A, Tang H, Peng Z, Wang X (2015) Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62:592–601

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Guo J, Ding AP, Qi WW, Zhang PH, Lv J, Qiu WS, Sun ZQ (2017) Association of mixed lineage kinase Domain-Like protein expression with prognosis in patients with Colon cancer. Technol Cancer Res Treat 16:428–434

    Article  CAS  PubMed  Google Scholar 

  31. He L, Peng K, Liu Y, Xiong J, Zhu FF (2013) Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco Targets Ther 6:1539–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  CAS  PubMed  Google Scholar 

  33. Orozco SL, Daniels BP, Yatim N, Messmer MN, Quarato G, Chen-Harris H, Cullen SP, Snyder AG, Ralli-Jain P, Frase S et al (2019) RIPK3 activation leads to Cytokine Synthesis that continues after loss of cell membrane Integrity. Cell Rep 28:2275–2287e2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Snyder AG, Hubbard NW, Messmer MN, Kofman SB, Hagan CE, Orozco SL, Chiang K, Daniels BP, Baker D, Oberst A (2019): Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci Immunol 4

  35. Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, Ramnarain DB, Xiao G, Saha D, Boothman DA et al (2009) The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res 69:2809–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, Croft A, Tseng HY, Wilmott JS, Scolyer RA et al (2015) RIP1 kinase is an oncogenic driver in Melanoma. Cancer Res 75:1736–1748

    Article  CAS  PubMed  Google Scholar 

  37. Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH et al (2016) The necrosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. Nature 532:245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weinlich R, Oberst A, Beere HM, Green DR (2017) Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 18:127–136

    Article  CAS  PubMed  Google Scholar 

  39. Yan J, Wan P, Choksi S, Liu ZG (2022) Necroptosis and tumor progression. Trends Cancer 8:21–27

    Article  CAS  PubMed  Google Scholar 

  40. Baik JY, Liu Z, Jiao D, Kwon HJ, Yan J, Kadigamuwa C, Choe M, Lake R, Kruhlak M, Tandon M et al (2021) ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer. Nat Commun 12:2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Z, Choksi S, Kwon HJ, Jiao D, Liu C, Liu ZG (2023) Tumor necroptosis-mediated shedding of cell surface proteins promotes metastasis of breast cancer by suppressing anti-tumor immunity. Breast Cancer Res 25:10

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  43. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Li Q, Aushev VN, Neugut AI, Santella RM, Teitelbaum S, Chen J (2021) PAM50- and immunohistochemistry-based subtypes of breast cancer and their relationship with breast cancer mortality in a population-based study. Breast Cancer 28:1235–1242

    Article  PubMed  Google Scholar 

  45. Pu M, Messer K, Davies SR, Vickery TL, Pittman E, Parker BA, Ellis MJ, Flatt SW, Marinac CR, Nelson SH et al (2020) Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Treat 179:197–206

    Article  CAS  PubMed  Google Scholar 

  46. Lee KH, Kim EY, Yun JS, Park YL, Do SI, Chae SW, Park CH (2018) The prognostic and predictive value of tumor-infiltrating lymphocytes and hematologic parameters in patients with breast cancer. BMC Cancer 18:938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4:59

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nelson MA, Ngamcherdtrakul W, Luoh SW, Yantasee W (2021) Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev 40:519–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A, Albert ML (2015) RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Science 350:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stutz MD, Ojaimi S, Allison C, Preston S, Arandjelovic P, Hildebrand JM, Sandow JJ, Webb AI, Silke J, Alexander WS, Pellegrini M (2018) Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death Differ 25:951–965

    Article  CAS  PubMed  Google Scholar 

  51. He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108:20054–20059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu JV, Chen HC, Walsh CM (2014) Necroptotic signaling in adaptive and innate immunity. Semin Cell Dev Biol 35:33–39

    Article  PubMed  Google Scholar 

  53. Kang YJ, Bang BR, Han KH, Hong L, Shim EJ, Ma J, Lerner RA, Otsuka M (2015) Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat Commun 6:8371

    Article  CAS  PubMed  Google Scholar 

  54. Vodnala SK, Eil R, Kishton RJ, Sukumar M, Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z et al (2019): T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363

  55. Wang J, Li Y, Fu W, Zhang Y, Jiang J, Zhang Y, Qi X (2019) Prognostic nomogram based on immune scores for breast cancer patients. Cancer Med 8:5214–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bouzidi L, Triki H, Charfi S, Kridis WB, Derbel M, Ayadi L, Sellami-Boudawara T, Cherif B (2021) Prognostic value of natural killer cells besides tumor-infiltrating lymphocytes in breast Cancer tissues. Clin Breast Cancer 21:e738–e747

    Article  CAS  PubMed  Google Scholar 

  57. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA et al (2014) Association between CD8 + T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol 25:1536–1543

    Article  CAS  PubMed  Google Scholar 

  58. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8 + lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955

    Article  PubMed  Google Scholar 

  59. Wang Y, Wang M, Yu K, Xu S, Qiu P, Lyu Z, et al (2023) A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity. Cancer Biology & Medicine 20(3):218–228;

  60. Yu CX. (2023) Radiotherapy of early-stage breast cancer. Precision Radiation Oncology 7:67–79.

  61. Shanmughapriya S, Rajan S, Hoffman NE, Higgins AM, Tomar D, Nemani N, Hines KJ, Smith DJ, Eguchi A, Vallem S et al (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate everyone who has participated in this research work. And we thank Dr. Shizhang Ling for proof correction and discussion, Dr. Jianming Zeng (University of Macau), and all the members of his bioinformatics team, biotrainee, for generously sharing their experience and codes. The Use of the biorstudio high performance computing cluster (https://biorstudio.cloud) at Biotrainee and The shanghai HS Biotech Co., Ltd for conducting the research reported in this paper. We also thank all members of The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College.

Funding

This study was supported by the National Natural Science Foundation of China and The Recruitment Program of Overseas High-Level Young Talents; Key Scientific Research Project of Jiangsu Provincial Health Commission (ZD2021019); Beijing Xisike Clinical Oncology Research Foundation (Y-tongshu2021/ms-0294), and the start-up funding of the Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University.

Author information

Authors and Affiliations

Authors

Contributions

FZ conceived and designed the study. FZ, CXQ, ZPY and HJX participated in data acquisition, discussion, analysis and interpretation of data, cell assay, writing, reviewing, and revision of the manuscript. GRZ, CZL and HPX supervised and monitored the data and participated in funding acquisition, reviewing and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoren Zhou, Congzhu Li or Hongping Xia.

Ethics declarations

Ethics approval and consent to participate

No administrative permission and/or licenses is acquired by this study to access the original data used in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Qi, C., Yao, Z. et al. Identification and validation of a novel necroptosis-related molecular signature to evaluate prognosis and immune features in breast cancer. Apoptosis 28, 1628–1645 (2023). https://doi.org/10.1007/s10495-023-01887-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01887-5

Keywords

Navigation