Skip to main content
Log in

Benefits of high-intensity interval training compared to continuous training to reduce apoptotic markers in female rats with cisplatin nephrotoxicity – possible modulatory role of IL-11

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptotic signaling pathways are involved in acute kidney injury (AKI) induced by the antineoplastic drug cisplatin (Cis). Mechanical stress is known to increase interleukin (IL) -11, a pleiotropic cytokine with antiapoptotic and antinecrotic effects. We compared the impact of high-intensity interval training (HIIT) with low-intensity continuous training (LICT) and moderate-intensity continuous training (MICT) on renal levels of IL-11 and the expression of apoptotic markers in female rats with nephrotoxicity induced by Cis. For that, the animals were divided into five groups (n = 7): control and sedentary (C + S); Cis and sedentary (Cis + S); Cis and LICT (Cis + LICT); Cis and MICT (Cis + MICT) and Cis and HIIT (Cis + HIIT). At the end of 8 weeks of treadmill running, the rats received a single injection of Cis (5 mg/kg), and 7 days later they were euthanized. Serum and kidney samples were collected to assess the blood urea nitrogen (BUN), gene expression of TNF receptor 1 (TNFR1) and 2 (TNFR2), caspase-3, (p38) MAPK (MAPK14), p53, Bax, Bak, Bcl-2, and Bcl-xL, renal levels of IL-11, IL-8, and p53, and immunolocalization of cleaved caspase-3, Bax, Bcl-2, and (p38) MAPK in renal tissue. Our data indicate that all trained groups showed a significant intensity-dependent increase in renal levels of IL-11 associated with reduced local expression of proapoptotic and increased antiapoptotic markers, but these effects were more pronounced with HIIT. So, HIIT appears to provide superior renoprotection than traditional continuous training by modulating apoptotic signaling pathways, and this effect can be related to the increase in renal levels of IL-11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

the datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL (2019) Recent advances in models, mechanisms, biomarkers, and Interventions in Cisplatin-Induced Acute kidney Injury. Int J Mol Sci 20:3011. https://doi.org/10.3390/ijms20123011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N (2019) Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci 26:1–14. https://doi.org/10.1186/s12929-019-0518-9

    Article  Google Scholar 

  3. Dubey RK, Jackson EK (2001) Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol 280:F365–F388. https://doi.org/10.1152/ajprenal.2001.280.3.F365

    Article  CAS  PubMed  Google Scholar 

  4. Pan JS, Sheikh-Hamad D (2019) Mitochondrial dysfunction in acute kidney injury and sex-specific implications. Med Res Arch. https://doi.org/10.18103/mra.v7i2.1898

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pezeshki Z, Nematbakhsh M, Mazaheri S, Eshraghi-Jazi F, Talebi A, Nasri H, Safari T, Mansouri A, Ashrafi F (2012) Estrogen abolishes Protective Effect of Erythropoietin against Cisplatin-Induced Nephrotoxicity in Ovariectomized rats. ISRN Oncol. https://doi.org/10.5402/2012/890310

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen WY, Hsiao CH, Chen YC, Ho CH, Wang J-J, Hsing CH, Wang HY, Kan WC, Wu CC (2017) Cisplatin nephrotoxicity might have a sex difference. An analysis based on women’s sex hormone changes. J Cancer 8:3939–3944. https://doi.org/10.7150/jca.20083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31:15–25. https://doi.org/10.1007/s40620-017-0392-z

    Article  CAS  PubMed  Google Scholar 

  8. Ma N, Wei W, Fan X, Ci X (2019) Farrerol attenuates Cisplatin-Induced nephrotoxicity by inhibiting the reactive oxygen species-mediated oxidation, inflammation, and apoptotic signaling pathways. https://doi.org/10.3389/fphys.2019.01419. Front Physiol

  9. Malik S, Bhatia J, Suchal K, Gamad N, Dinda AK, Gupta YK, Arya DS (2015) Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp Toxicol Pathol 67:427–433. https://doi.org/10.1016/j.etp.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  10. Kim H-J, Park DJ, Kim JH, Jeong EY, Jung MH, Kim T-H, Yang JI, Lee G-W, Chung HJ, Chang S-H (2015) Glutamine protects against cisplatin-induced nephrotoxicity by decreasing cisplatin accumulation. J Pharmacol Sci 127:117–126. https://doi.org/10.1016/j.jphs.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  11. Akassoglou K, Douni E, Bauer J, Lassmann H, Kollias G, Probert L (2003) Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proceedings of the National Academy of Sciences 100:709–714. https://doi.org/10.1073/pnas.0236046100

  12. Ramesh G, Brian Reeves W (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiology-Renal Physiol 285:F610–F618. https://doi.org/10.1152/ajprenal.00101.2003

    Article  CAS  Google Scholar 

  13. Yang Y-C, Hsu T-Y, Chen J-Y, Yang C-S, Lin R-H (2001) Tumour necrosis factor-α-induced apoptosis in cord blood T lymphocytes: involvement of both tumour necrosis factor receptor types 1 and 2. Br J Haematol 115:435–441. https://doi.org/10.1046/j.1365-2141.2001.03090.x

    Article  CAS  PubMed  Google Scholar 

  14. Naudé PJW, den Boer JA, Luiten PGM, Eisel ULM (2011) Tumor necrosis factor receptor cross-talk. FEBS J 278:888–898. https://doi.org/10.1111/j.1742-4658.2011.08017.x

    Article  CAS  PubMed  Google Scholar 

  15. Borghi A, Verstrepen L, Beyaert R (2016) TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol 116:1–10. https://doi.org/10.1016/j.bcp.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  16. Al-Lamki RS, Mayadas TN (2015) TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int 87:281–296. https://doi.org/10.1038/ki.2014.285

    Article  CAS  PubMed  Google Scholar 

  17. Yang S, Wang J, Brand DD, Zheng SG (2018) Role of TNF–TNF receptor 2 Signal in Regulatory T cells and its therapeutic implications. Front Immunol. https://doi.org/10.3389/fimmu.2018.00784

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tomar A, Vasisth S, Khan SI, Malik S, Nag TC, Arya DS, Bhatia J (2017) Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade. Phytomedicine 34:154–161. https://doi.org/10.1016/j.phymed.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  19. Li RY, Zhang WZ, Yan XT et al (2019) Arginyl-fructosyl-glucose, a major Maillard reaction product of Red Ginseng, attenuates Cisplatin-Induced Acute kidney Injury by Regulating Nuclear factor κB and phosphatidylinositol 3-Kinase/Protein kinase B Signaling Pathways. J Agric Food Chem 67:5754–5763. https://doi.org/10.1021/acs.jafc.9b00540

    Article  CAS  PubMed  Google Scholar 

  20. Tsuruya K, Tokumoto M, Ninomiya T, Hirakawa M, Masutani K, Taniguchi M, Fukuda K, Kanai H, Hirakata H, Iida M (2003) Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am J Physiology-Renal Physiol 285:F208–F218. https://doi.org/10.1152/ajprenal.00311.2002

    Article  CAS  Google Scholar 

  21. Jiang M, Yi X, Hsu S, Wang C-Y, Dong Z (2004) Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am J Physiology-Renal Physiol 287:F1140–F1147. https://doi.org/10.1152/ajprenal.00262.2004

    Article  CAS  Google Scholar 

  22. Silva KA dos, dos Santos Silva S, da Silva Luiz KA R, et al (2012) Previous Exercise Training has a Beneficial Effect on Renal and Cardiovascular function in a model of diabetes. PLoS ONE 7:e48826. https://doi.org/10.1371/journal.pone.0048826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faleiros CM, Francescato HDC, Papoti M, Chaves L, Silva CGA, Costa RS, Coimbra TM (2017) Effects of previous physical training on adriamycin nephropathy and its relationship with endothelial lesions and angiogenesis in the renal cortex. Life Sci 169:43–51. https://doi.org/10.1016/j.lfs.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  24. Amaral LS, de Silva B, Correia FA VB et al (2016) Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats. Experimental Biology and Medicine 241:437–445. https://doi.org/10.1177/1535370215609696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amaral LS, de Souza B, Volpini CS RA et al (2018) Previous Exercise Training reduces markers of renal oxidative stress and inflammation in Streptozotocin-Induced Diabetic Female rats. J Diabetes Res 2018:1–9. https://doi.org/10.1155/2018/6170352

    Article  CAS  Google Scholar 

  26. Souza CS, de Sousa Oliveira BS, Viana GN et al (2019) Preventive effect of exercise training on diabetic kidney disease in ovariectomized rats with type 1 diabetes. Experimental Biology and Medicine 244:758–769. https://doi.org/10.1177/1535370219843830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leite AB, Lima HN, Flores CO et al (2021) High-intensity interval training is more effective than continuous training to reduce inflammation markers in female rats with cisplatin nephrotoxicity. Life Sci 266:118880. https://doi.org/10.1016/j.lfs.2020.118880

    Article  CAS  PubMed  Google Scholar 

  28. Kido S, Kuriwaka-Kido R, Imamura T, Ito Y, Inoue D, Matsumoto T (2009) Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation. Bone 45:1125–1132. https://doi.org/10.1016/j.bone.2009.07.087

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto T, Kuriwaka-Kido R, Kondo T, Endo I, Kido S (2012) Regulation of osteoblast differentiation by interleukin-11 via AP-1 and smad signaling [Review]. Endocr J 59:91–101. https://doi.org/10.1507/endocrj.ej11-0219

    Article  CAS  PubMed  Google Scholar 

  30. Du X, Williams DA (1997) Interleukin-11: review of molecular, cell biology, and clinical use. Blood 89:3897–3908. https://doi.org/10.1182/blood.v89.11.3897

    Article  CAS  PubMed  Google Scholar 

  31. Goldman SC, Bracho F, Davenport V, Slack R, Areman E, Shen V, Lenarsky C, Weinthal J, Hughes R, Cairo MS (2001) Feasibility study of IL-11 and granulocyte colony-stimulating factor after Myelosuppressive Chemotherapy to mobilize peripheral blood stem cells from heavily pretreated patients. J Pediatr Hematol Oncol 23:300–305. https://doi.org/10.1097/00043426-200106000-00013

    Article  CAS  PubMed  Google Scholar 

  32. Lai PC, Terence Cook H, Smith J, Keith JC, Pusey CD, Tam FWK (2001) Interleukin-11 attenuates nephrotoxic nephritis in Wistar Kyoto rats. J Am Soc Nephrol 12:2310–2320. https://doi.org/10.1681/asn.v12112310

    Article  CAS  PubMed  Google Scholar 

  33. Lee HT, Thomas Lee H, Park SW, Kim M, Ham A, Anderson LJ, Brown KM, D’Agati VD, Cox GN (2012) Interleukin-11 protects against renal ischemia and reperfusion injury. Am J Physiology-Renal Physiol 303:F1216–F1224. https://doi.org/10.1152/ajprenal.00220.2012

    Article  CAS  Google Scholar 

  34. Kim JY, Kim M, Ham A, Brown KM, Greene RW, D’Agati VD, Thomas Lee H (2013) IL-11 is required for A1Adenosine receptor–mediated protection against ischemic AKI. J Am Soc Nephrol 24:1558–1570. https://doi.org/10.1681/asn.2013010114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiology-Regulatory Integr Comp Physiol 285:R962–R970. https://doi.org/10.1152/ajpregu.00201.2003

    Article  CAS  Google Scholar 

  36. Francescato HDC, Almeida LF, Reis NG, Faleiros CM, Papoti M, Costa RS, Coimbra TM (2018) Previous Exercise Effects in Cisplatin-Induced Renal Lesions in rats. Kidney and Blood Pressure Research 43:582–593. https://doi.org/10.1159/000488964

    Article  CAS  PubMed  Google Scholar 

  37. Lima WV, Visona I, Schor N, Almeida WS (2019) Preconditioning by aerobic exercise reduces acute ischemic renal injury in rats. Physiological Rep. https://doi.org/10.14814/phy2.14176

    Article  Google Scholar 

  38. Silveira MORda, da Silveira MOR, de Brito Amaral LS, de Souza SI, Ferraz HR, Dias JA, Rocha EC, de Abreu Silva F, de Magalhães ACM, de Jesus Soares T (2019) Effect of moderate exercise on renal changes and oxidative stress in ovariectomized rats with type 1 diabetes mellitus. Brazilian J Biol Sci 6:331–345. https://doi.org/10.21472/bjbs.061302

    Article  Google Scholar 

  39. Bragado P, Armesilla A, Silva A, Porras A (2007) Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis 12:1733–1742. https://doi.org/10.1007/s10495-007-0082-8

    Article  CAS  PubMed  Google Scholar 

  40. Miyagi MYS, Seelaender M, Castoldi A et al (2014) Long-Term Aerobic Exercise protects against Cisplatin-Induced nephrotoxicity by modulating the expression of IL-6 and HO-1. PLoS ONE 9:e108543. https://doi.org/10.1371/journal.pone.0108543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen KC, Peng CC, Hsieh CL, Peng RY (2013) Exercise ameliorates renal cell apoptosis in chronic kidney disease by intervening in the intrinsic and the extrinsic apoptotic pathways in a rat model. Evidence-Based Complement Altern Med 2013:1–13. https://doi.org/10.1155/2013/368450

    Article  Google Scholar 

  42. Estrela GR, Wasinski F, Batista RO et al (2017) Caloric restriction is more efficient than physical Exercise to protect from Cisplatin Nephrotoxicity via PPAR-Alpha activation. Front Physiol. https://doi.org/10.3389/fphys.2017.00116

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noroozi J, Zeynali F, Nematbakhsh M, Pezeshki Z, Talebi A (2015) Nonpreventive role of Aerobic Exercise against Cisplatin-induced nephrotoxicity in female rats. Int J Prev Med 6:58. https://doi.org/10.4103/2008-7802.160333

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tucker PS, Scanlan AT, Vella RK, Dalbo VJ (2016) Genomic Integrity is favourably affected by high-intensity interval training in an animal model of early-stage chronic kidney disease. https://doi.org/10.1186/s40798-016-0055-y. Sports Medicine - Open

  45. Tucker PS, Briskey DR, Scanlan AT, Coombes JS, Dalbo VJ (2015) High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease. Free Radic Biol Med 89:466–472. https://doi.org/10.1016/j.freeradbiomed.2015.07.162

    Article  CAS  PubMed  Google Scholar 

  46. Almeida AA, Correia TML, Pires RA et al (2022) Nephroprotective effect of exercise training in cisplatin-induced renal damage in mice: influence of training protocol. Braz J Med Biol Res 55:e12116. https://doi.org/10.1590/1414-431X2022e12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu M, Lu B, Cao Q, Wu Z, Xu Z, Li W, Yao X, Liu F (2015) IL-11 attenuates Liver Ischemia/Reperfusion Injury (IRI) through STAT3 signaling pathway in mice. PLoS ONE 10:e0126296. https://doi.org/10.1371/journal.pone.0126296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

authors are grateful to professor Regiane Yatsuda for donating experimental animals, and Luiza Brito Amaral for her artistic contribution.

Funding

this work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant number: 433542/2018-7, and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), grant number: 1144/2021.

Author information

Authors and Affiliations

Authors

Contributions

LSBA designed the study, supervised, and coordinated the project. LSBA and CAO wrote the original manuscript. LSBA, CAO, TJS, and FFM revised the paper. CAO, JMB, LMB, AVBS, and JAGC conducted animal experiments. CAO, EABM, FSP, FFM, and MVO conducted laboratory experiments. LSBA, ACMM, and TJS discussed the results and analyzed the data. All authors read and approved this manuscript.

Corresponding author

Correspondence to Liliany Souza de Brito Amaral.

Ethics declarations

Statements and declarations

all authors of this manuscript have read the journal’s authorship agreement and policy and declare no conflict of interest with respect to the research, authorship, and publication of this article.

Ethical approval

the Ethics Committee on Animal Experimentation of the Federal University of Bahia - Multidisciplinary Institute of Health approved this experimental protocol (056/2018), and all experimental procedures were conducted in accordance with the recommendations of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.A., Mercês, É.A.B., Portela, F.S. et al. Benefits of high-intensity interval training compared to continuous training to reduce apoptotic markers in female rats with cisplatin nephrotoxicity – possible modulatory role of IL-11. Apoptosis 28, 566–575 (2023). https://doi.org/10.1007/s10495-023-01816-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01816-6

Keywords

Navigation