Skip to main content

Advertisement

Log in

The unfolded protein response (UPR) pathway: the unsung hero in breast cancer management

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumor cells always have the need to produce an increased amount of proteins in the cells. This elevated amount of proteins increases the pressure on the organelles of the cell such as the endoplasmic reticulum and compels it to increase its protein folding efficiency. However, it is by a matter of fact, that the amount of proteins synthesized outweighs the protein folding capacity of the ER which in turn switches on the UPR pathway by activating the three major molecular sensors and other signaling cascades, which helps in cell survival instead of instant death. However, if this pathway is active for a prolonged period of time the tumor cells heads toward apoptosis. Again, interestingly this is not the same as in case of non- tumorogenic cells. This exhibit a straight natural pathway for tumor cells-specific destruction which has a great implication in today’s world where hormone therapies and chemo-therapies are non-effective for various types of breast cancer, a major type being Triple Negative Breast Cancer. Thus a detailed elucidation of the molecular involvement of the UPR pathway in breast cancer may open new avenues for management and attract novel chemotherapeutic targets providing better hopes to patients worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GRP78:

Glucose regulated protein 78

UPR:

Unfolded Protein Response

TNBC:

Triple Negative Breast Cancer

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

ATF:

Activating transcription factor

IRE1:

Inositol Requiring Enzyme 1

ERS:

Endoplasmic Reticulum Stress

PAH:

Pulmonary Arterial Hypertension

SERM:

Selective Endoplasmic Reticulum Modulators

E2 :

17β-Estradiol

AI:

Aromatase Inhibitors

FDA:

Food and Drug Administration

PQC:

Protein Quality Control

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014: cancer statistics, 2014. A Cancer J Clin 64(1):9–29. https://doi.org/10.3322/caac.21208

    Article  Google Scholar 

  2. Ribelles N, Perez-Villa L, Jerez JM, Pajares B, Vicioso L, Jimenez B, de Luque V, Franco L, Gallego E, Marquez A, Alvarez M, Sanchez-Muñoz A, Perez-Rivas L, Alba E (2013) Pattern of recurrence of early breast cancer is different according to intrinsic subtype and proliferation index. Breast Cancer Res 15(5):R98. https://doi.org/10.1186/bcr3559

    Article  PubMed  PubMed Central  Google Scholar 

  3. McGrath E, Logue S, Mnich K, Deegan S, Jäger R, Gorman A, Samali A (2018) The unfolded protein response in breast cancer. Cancers 10(10):344. https://doi.org/10.3390/cancers10100344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tecalco-Cruz AC, Ramírez-Jarquín JO (2018) Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 9(4):60–70. https://doi.org/10.5306/wjco.v9.i4.60

    Article  PubMed  PubMed Central  Google Scholar 

  5. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726. https://doi.org/10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  6. Nagelkerke A, Bussink J, Sweep FCGJ, Span PN (2014) The unfolded protein response as a target for cancer therapy. Biochimica Et Biophysica Acta (BBA) - Reviews on Cancer 1846(2):277–284. https://doi.org/10.1016/j.bbcan.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  7. Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response—A stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28(1–2):79–92. https://doi.org/10.1016/j.jchemneu.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  9. Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MMU (2019) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol 26(11):1053–1062. https://doi.org/10.1038/s41594-019-0324-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007.(*)

    Article  CAS  PubMed  Google Scholar 

  11. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4):692–706. https://doi.org/10.1016/j.cell.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frakes AE, Dillin A (2017) The upr er: sensor and coordinator of organismal homeostasis. Mol Cell 66(6):761–771. https://doi.org/10.1016/j.molcel.2017.05.031

    Article  CAS  PubMed  Google Scholar 

  13. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Investig 110(10):1389–1398. https://doi.org/10.1172/JCI0216886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Investig 110(10):1383–1388. https://doi.org/10.1172/JCI0216784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: Coping with stress. Trends Cell Biol 14(1):20–28. https://doi.org/10.1016/j.tcb.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  16. Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnóczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921. https://doi.org/10.1083/jcb.200604016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. https://doi.org/10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2000) Atf6 activated by proteolysis binds in the presence of nf-y (Cbf) directly to the cis -acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20(18):6755–6767. https://doi.org/10.1128/MCB.20.18.6755-6767.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96. https://doi.org/10.1038/415092a

    Article  CAS  PubMed  Google Scholar 

  20. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13(3):374–384. https://doi.org/10.1038/sj.cdd.4401840

    Article  CAS  PubMed  Google Scholar 

  21. Sequeira SJ, Ranganathan AC, Adam AP, Iglesias BV, Farias EF, Aguirre-Ghiso JA (2007) Inhibition of proliferation by perk regulates mammary acinar morphogenesis and tumor formation. PLoS ONE 2(7):e615. https://doi.org/10.1371/journal.pone.0000615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K, Koumenis C, Harding HP, Ron D, Holcik M, Bell JC (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26(24):9517–9532. https://doi.org/10.1128/MCB.01145-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci 101(31):11269–11274. https://doi.org/10.1073/pnas.0400541101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barbosa-Tessmann IP (2000) Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem. https://doi.org/10.1074/jbc.M000004200

    Article  PubMed  Google Scholar 

  25. Roybal CN, Hunsaker LA, Barbash O, Jagt DLV, Abcouwer SF (2005) The oxidative stressor arsenite activates vascular endothelial growth factor mrna transcription by an atf4-dependent mechanism. J Biol Chem 280(21):20331–20339. https://doi.org/10.1074/jbc.M411275200

    Article  CAS  PubMed  Google Scholar 

  26. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM, Ron D (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (Chop/gadd153). Mol Cell Biol 16(8):4273–4280. https://doi.org/10.1128/MCB.16.8.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18(24):3066–3077. https://doi.org/10.1101/gad.1250704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Shen J, Prywes R (2002) The luminal domain of atf6 senses endoplasmic reticulum (Er) stress and causes translocation of atf6 from the er to the golgi. J Biol Chem 277(15):13045–13052. https://doi.org/10.1074/jbc.M110636200

    Article  CAS  PubMed  Google Scholar 

  29. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12(7):982–995. https://doi.org/10.1101/gad.12.7.982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4(12):966–977. https://doi.org/10.1038/nrc1505

    Article  CAS  PubMed  Google Scholar 

  31. Song S, Tan J, Miao Y, Zhang Q (2018) Crosstalk of ER stress-mediated autophagy and ER-phagy: involvement of UPR and the core autophagy machinery. J Cell Physiol 233(5):3867–3874. https://doi.org/10.1002/jcp.26137

    Article  CAS  PubMed  Google Scholar 

  32. Yu Miao R, Drabsch Y, Cross RS, Cheasley D, Carpinteri S, Pereira L, Malaterre J, Gonda TJ, Anderson RL, Ramsay RG (2011) Myb is essential for mammary tumorigenesis. Can Res 71(22):7029–7037. https://doi.org/10.1158/0008-5472.CAN-11-1015

    Article  CAS  Google Scholar 

  33. Lin Y, Chen T, Hung C, Tai S, Huang S, Chang C, Hung H, Lee E (2018) Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3607

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, Wouters BG, Bell JC (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24(17):7469–7482. https://doi.org/10.1128/MCB.24.17.7469-7482.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529(7586):326–335. https://doi.org/10.1038/nature17041

    Article  CAS  PubMed  Google Scholar 

  36. Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. https://doi.org/10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci 105(47):18525–18530. https://doi.org/10.1073/pnas.0809677105

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Investig 118(10):3378–3389. https://doi.org/10.1172/JCI34587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (Ros) and ros-induced ros release. Physiol Rev 94(3):909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaufman RJ, Malhotra JD (2014) Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research 1843(10):2233–2239. https://doi.org/10.1016/j.bbamcr.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Cubillos-Ruiz JR (2021) Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 21(2):71–88. https://doi.org/10.1038/s41568-020-00312-2

    Article  CAS  PubMed  Google Scholar 

  42. Kozutsumi Y, Segal M, Normington K, Gething M-J, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332(6163):462–464. https://doi.org/10.1038/332462a0

    Article  CAS  PubMed  Google Scholar 

  43. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87(3):391–404. https://doi.org/10.1016/S0092-8674(00)81360-4

    Article  CAS  PubMed  Google Scholar 

  44. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332. https://doi.org/10.1038/35014014

    Article  CAS  PubMed  Google Scholar 

  45. Shen J, Chen X, Hendershot L, Prywes R (2002) Er stress regulation of atf6 localization by dissociation of bip/grp78 binding and unmasking of golgi localization signals. Dev Cell 3(1):99–111. https://doi.org/10.1016/S1534-5807(02)00203-4

    Article  CAS  PubMed  Google Scholar 

  46. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by gadd34-mediated dephosphorylation of eif2α. J Cell Biol 153(5):1011–1022. https://doi.org/10.1083/jcb.153.5.1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Del Vecchio CA, Feng Y, Sokol ES, Tillman EJ, Sanduja S, Reinhardt F, Gupta PB (2014) De-differentiation confers multidrug resistance via noncanonical perk-nrf2 signaling. PLoS Biol 12(9):e1001945. https://doi.org/10.1371/journal.pbio.1001945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the er to activation of jnk protein kinases by transmembrane protein kinase ire1. Science 287(5453):664–666. https://doi.org/10.1126/science.287.5453.664

    Article  CAS  PubMed  Google Scholar 

  49. Jurkin J, Henkel T, Nielsen AF, Minnich M, Popow J, Kaufmann T, Heindl K, Hoffmann T, Busslinger M, Martinez J (2014) The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J 33(24):2922–2936. https://doi.org/10.15252/embj.201490332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG, Wu C, Yates JR, Su AI, Kelly JW, Wiseman RL (2013) Stress-independent activation of xbp1s and/or atf6 reveals three functionally diverse er proteostasis environments. Cell Rep 3(4):1279–1292. https://doi.org/10.1016/j.celrep.2013.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Urra H, Dufey E, Avril T, Chevet E, Hetz C (2016) Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer 2(5):252–262. https://doi.org/10.1016/j.trecan.2016.03.007

    Article  PubMed  Google Scholar 

  52. Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eef1a translation factor detected in breast cancer tissue. Can Res 65(13):5599–5606. https://doi.org/10.1158/0008-5472.CAN-05-0201

    Article  CAS  Google Scholar 

  53. Vlashi E, Lagadec C, Chan M, Frohnen P, McDonald AJ, Pajonk F (2013) Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Res Treat 141(2):197–203. https://doi.org/10.1007/s10549-013-2688-6

    Article  CAS  PubMed  Google Scholar 

  54. Direito I, Fardilha M, Helguero LA (2019) Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 40(2):203–215. https://doi.org/10.1093/carcin/bgy182

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of atf6α and xbp1. Dev Cell 13(3):365–376. https://doi.org/10.1016/j.devcel.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  56. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AFG, Lavandero S (2013) Endoplasmic reticulum and the unfolded protein response. International Review of Cell and Molecular Biology, vol 301. Elsevier, Amsterdam, pp 215–290. https://doi.org/10.1016/B978-0-12-407704-1.00005-1

    Chapter  Google Scholar 

  58. Lu W, László CF, Miao Z, Chen H, Wu S (2009) The role of nitric-oxide synthase in the regulation of uvb light-induced phosphorylation of the α subunit of eukaryotic initiation factor 2. J Biol Chem 284(36):24281–24288. https://doi.org/10.1074/jbc.M109.008821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spruce BA, Campbell LA, McTavish N, Cooper MA, Appleyard MVL, O’Neill M, Howie J, Samson J, Watt S, Murray K, McLean D, Leslie NR, Safrany ST, Ferguson MJ, Peters JA, Prescott AR, Box G, Hayes A, Nutley B et al (2004) Small molecule antagonists of the σ-1 receptor cause selective release of the death program in tumor and self-reliant cells and inhibit tumor growth in vitro and in vivo. Can Res 64(14):4875–4886. https://doi.org/10.1158/0008-5472.CAN-03-3180

    Article  CAS  Google Scholar 

  60. Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the er- mitochondrion interface regulate ca2+ signaling and cell survival. Cell 131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  61. Swart C, Du Toit A, Loos B (2016) Autophagy and the invisible line between life and death. Eur J Cell Biol 95(12):598–610. https://doi.org/10.1016/j.ejcb.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  62. Yun C, Lee S (2018) The roles of autophagy in cancer. Int J Mol Sci 19(11):3466. https://doi.org/10.3390/ijms19113466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jin S, Wei J, You L, Liu H, Qian W (2018) Autophagy regulation and its dual role in blood cancers: a novel target for therapeutic development (Review). Oncol Rep. https://doi.org/10.3892/or.2018.6370

    Article  PubMed  PubMed Central  Google Scholar 

  64. Szegezdi E, MacDonald DC, Ní Chonghaile T, Gupta S, Samali A (2009) Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol 296(5):C941–C953. https://doi.org/10.1152/ajpcell.00612.2008

    Article  CAS  PubMed  Google Scholar 

  65. Li Y, Guo Y, Tang J, Jiang J, Chen Z (2015) New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin 47(2):146–147. https://doi.org/10.1093/abbs/gmu128

    Article  PubMed  Google Scholar 

  66. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833(12):3460–3470. https://doi.org/10.1016/j.bbamcr.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  67. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885. https://doi.org/10.1038/sj.embor.7400779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hotamisligil GS, Davis RJ (2016) Cell signaling and stress responses. Cold Spring Harb Perspect Biol 8(10):a006072. https://doi.org/10.1101/cshperspect.a006072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maurel M, Chevet E, Tavernier J, Gerlo S (2014) Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 39(5):245–254. https://doi.org/10.1016/j.tibs.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  71. Deng X, Xiao L, Lang W, Gao F, Ruvolo P, May WS (2001) Novel role for jnk as a stress-activated bcl2 kinase. J Biol Chem 276(26):23681–23688. https://doi.org/10.1074/jbc.M100279200

    Article  CAS  PubMed  Google Scholar 

  72. Kim I, Shu C-W, Xu W, Shiau C-W, Grant D, Vasile S, Cosford NDP, Reed JC (2009) Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ask1. J Biol Chem 284(3):1593–1603. https://doi.org/10.1074/jbc.M807308200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feng Y-X, Jin DX, Sokol ES, Reinhardt F, Miller DH, Gupta PB (2017) Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat Commun 8(1):1079. https://doi.org/10.1038/s41467-017-01052-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Syu J-P, Chi J-T, Kung H-N (2016) Nrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia. Oncotarget 7(12):14659–14672. https://doi.org/10.18632/oncotarget.7406

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct perk substrate and effector of perk-dependent cell survival. Mol Cell Biol 23(20):7198–7209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nagelkerke A, Bussink J, van der Kogel AJ, Sweep FCGJ, Span PN (2013) The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response. Radiother Oncol 108(3):415–421. https://doi.org/10.1016/j.radonc.2013.06.037

    Article  CAS  PubMed  Google Scholar 

  77. Notte A, Rebucci M, Fransolet M, Roegiers E, Genin M, Tellier C, Watillon K, Fattaccioli A, Arnould T, Michiels C (2015) Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis. Int J Biochem Cell Biol 62:1–14. https://doi.org/10.1016/j.biocel.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  78. Wang S, Chen XA, Hu J, Jiang J, Li Y, Chan-Salis KY, Gu Y, Chen G, Thomas C, Pugh BF, Wang Y (2015) Atf4 gene network mediates cellular response to the anticancer pad inhibitor yw3-56 in triple-negative breast cancer cells. Mol Cancer Ther 14(4):877–888. https://doi.org/10.1158/1535-7163.MCT-14-1093-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Clarke R, Cook KL (2015) Unfolding the role of stress response signaling in endocrine resistant breast cancers. Front Oncol. https://doi.org/10.3389/fonc.2015.00140

    Article  PubMed  PubMed Central  Google Scholar 

  80. Clarke R, Leonessa F, Welch JN, Skaar TC (2001) Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev 53(1):25–71

    CAS  PubMed  Google Scholar 

  81. Riggins RB, Bouton AH, Liu MC, Clarke R (2005) Antiestrogens aromatase inhibitors and apoptosis in breast cancer. Vitamins & Hormones, vol 71. Elsevier, Amsterdam, pp 201–237. https://doi.org/10.1016/S0083-6729(05)71007-4

    Chapter  Google Scholar 

  82. Jordan VC (2003) Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discovery 2(3):205–213. https://doi.org/10.1038/nrd1031

    Article  CAS  PubMed  Google Scholar 

  83. Jordan VC, Brodie AMH (2007) Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72(1):7–25. https://doi.org/10.1016/j.steroids.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  84. Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288(3):321–333. https://doi.org/10.1001/jama.288.3.321

    Article  Google Scholar 

  85. The women's health initiative steering committee (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The women's health initiative randomized controlled trial. JAMA, 291(14), 1701–1712. https://doi.org/10.1001/jama.291.14.1701

  86. Jordan VC (2020) Molecular mechanism for breast cancer incidence in the women’s health initiative. Cancer Prev Res 13(10):807–816. https://doi.org/10.1158/1940-6207.CAPR-20-0082

    Article  CAS  Google Scholar 

  87. Jordan VC (2008) The 38th david a. Karnofsky lecture: the paradoxical actions of estrogen in breast cancer—survival or death? J Clin Oncol 26(18):3073–3082. https://doi.org/10.1200/JCO.2008.17.5190

    Article  CAS  PubMed  Google Scholar 

  88. Tamoxifen for early breast cancer: An overview of the randomised trials. Early Breast Cancer Trialists ’Collaborative Group. (1998). Lancet (London, England), 351(9114), 1451–1467.

  89. Jordan VC (2014) Linking estrogen-induced apoptosis with decreases in mortality following long-term adjuvant tamoxifen therapy. JNCI J Natl Cancer Inst 106(11):dju296–dju296. https://doi.org/10.1093/jnci/dju296

    Article  CAS  PubMed  Google Scholar 

  90. Smith DC, Prentice R, Thompson DJ, Herrmann WL (1975) Association of exogenous estrogen and endometrial carcinoma. N Engl J Med 293(23):1164–1167. https://doi.org/10.1056/NEJM197512042932302

    Article  CAS  PubMed  Google Scholar 

  91. Ziel HK, Finkle WD (1975) Increased risk of endometrial carcinoma among users of conjugated estrogens. N Engl J Med 293(23):1167–1170. https://doi.org/10.1056/NEJM197512042932303

    Article  CAS  PubMed  Google Scholar 

  92. Clarke R, Cook KL, Hu R, Facey COB, Tavassoly I, Schwartz JL, Baumann WT, Tyson JJ, Xuan J, Wang Y, Wärri A, Shajahan AN (2012) Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Can Res 72(6):1321–1331. https://doi.org/10.1158/0008-5472.CAN-11-3213

    Article  CAS  Google Scholar 

  93. Gu Z, Lee RY, Skaar TC, Bouker KB, Welch JN, Lu J, Liu A, Zhu Y, Davis N, Leonessa F, Brünner N, Wang Y, Clarke R (2002) Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-kappaB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182,780). Can Res 62(12):3428–3437

    CAS  Google Scholar 

  94. Shajahan AN, Riggins RB, Clarke R (2009) The role of X-box binding protein-1 in tumorigenicity. Drug News Perspect 22(5):241. https://doi.org/10.1358/dnp.2009.22.5.1378631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fernandez PM, Tabbara SO, Jacobs LK, Manning FCR, Tsangaris TN, Schwartz AM, Kennedy KA, Patierno SR (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59(1):15–26. https://doi.org/10.1023/A:1006332011207

    Article  CAS  PubMed  Google Scholar 

  96. Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L (2009) Activation and clinical significance of the unfolded protein response in breast cancer. Br J Cancer 101(10):1692–1698. https://doi.org/10.1038/sj.bjc.6605365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cook KL, Shajahan AN, Wärri A, Jin L, Hilakivi-Clarke LA, Clarke R (2012) Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Can Res 72(13):3337–3349. https://doi.org/10.1158/0008-5472.CAN-12-0269

    Article  CAS  Google Scholar 

  98. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS (2006) Grp78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Can Res 66(16):7849–7853. https://doi.org/10.1158/0008-5472.CAN-06-1660

    Article  CAS  Google Scholar 

  99. Zhou H, Zhang Y, Fu Y, Chan L, Lee AS (2011) Novel mechanism of anti-apoptotic function of 78-kda glucose-regulated protein(Grp78). J Biol Chem 286(29):25687–25696. https://doi.org/10.1074/jbc.M110.212944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gifford JB, Hill R (2018) Grp78 influences chemoresistance and prognosis in cancer. Curr Drug Targets 19(6):701–708. https://doi.org/10.2174/1389450118666170615100918

    Article  CAS  PubMed  Google Scholar 

  101. Walter P, Ron D (2011) The unfolded protein response: From stress pathway to homeostatic regulation. Science 334(6059):1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  102. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) Xbp1 mrna is induced by atf6 and spliced by ire1 in response to er stress to produce a highly active transcription factor. Cell 107(7):881–891. https://doi.org/10.1016/S0092-8674(01)00611-0

    Article  CAS  PubMed  Google Scholar 

  103. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M et al (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508(7494):103–107. https://doi.org/10.1038/nature13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7(12):683–692. https://doi.org/10.1038/nrclinonc.2010.154

    Article  PubMed  Google Scholar 

  105. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. https://doi.org/10.1056/NEJMra1001389

    Article  CAS  PubMed  Google Scholar 

  106. Harnoss JM, Le Thomas A, Reichelt M, Guttman O, Wu TD, Marsters SA, Shemorry A, Lawrence DA, Kan D, Segal E, Merchant M, Totpal K, Crocker LM, Mesh K, Dohse M, Solon M, Modrusan Z, Rudolph J, Koeppen H et al (2020) Ire1α disruption in triple-negative breast cancer cooperates with antiangiogenic therapy by reversing er stress adaptation and remodeling the tumor microenvironment. Can Res 80(11):2368–2379. https://doi.org/10.1158/0008-5472.CAN-19-3108

    Article  CAS  Google Scholar 

  107. Mahalingam D, Wilding G, Denmeade S, Sarantopoulas J, Cosgrove D, Cetnar J, Azad N, Bruce J, Kurman M, Allgood VE, Carducci M (2016) Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: Results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br J Cancer 114(9):986–994. https://doi.org/10.1038/bjc.2016.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hetz C, Axten JM, Patterson JB (2019) Pharmacological targeting of the unfolded protein response for disease intervention. Nat Chem Biol 15(8):764–775. https://doi.org/10.1038/s41589-019-0326-2

    Article  CAS  PubMed  Google Scholar 

  109. Logue SE, McGrath EP, Cleary P, Greene S, Mnich K, Almanza A, Chevet E, Dwyer RM, Oommen A, Legembre P, Godey F, Madden EC, Leuzzi B, Obacz J, Zeng Q, Patterson JB, Jäger R, Gorman AM, Samali A (2018) Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat Commun 9(1):3267. https://doi.org/10.1038/s41467-018-05763-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao N, Cao J, Xu L, Tang Q, Dobrolecki LE, Lv X, Talukdar M, Lu Y, Wang X, Hu DZ, Shi Q, Xiang Y, Wang Y, Liu X, Bu W, Jiang Y, Li M, Gong Y, Sun Z, Chen X (2018) Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Investig 128(4):1283–1299. https://doi.org/10.1172/JCI95873

    Article  PubMed  PubMed Central  Google Scholar 

  111. Feng Y, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JHL, Proia TA, Jin DX, Reinhardt F, Ploegh HL, Wang Q, Gupta PB (2014) Epithelial-to-mesenchymal transition activates perk–eif2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov 4(6):702–715. https://doi.org/10.1158/2159-8290.CD-13-0945

    Article  CAS  PubMed  Google Scholar 

  112. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK-H, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Renslo AR, Sonenberg N, Walter P (2013) Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2:e00498. https://doi.org/10.7554/eLife.00498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Department of Science and Technology, DST SERB (sanction no: SRG/2019/000259) and CSIR EMR grant file no. (27(0359)/20/EMR-II) for financial support. Authors sincerely acknowledge Dr Rudranil De, for grammatical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AP, AA, SG wrote the paper and designed the figures; Concept and hypothesis AA and SG

Corresponding author

Correspondence to Swatilekha Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, A., Adhikary, A. & Ghosh, S. The unfolded protein response (UPR) pathway: the unsung hero in breast cancer management. Apoptosis 28, 263–276 (2023). https://doi.org/10.1007/s10495-022-01803-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01803-3

Keywords

Navigation