Skip to main content

The Unfolded Protein Response in Triple-Negative Breast Cancer

  • Chapter
  • First Online:
The Unfolded Protein Response in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 542 Accesses

Abstract

Triple-negative breast cancer (TNBC) is the designation of the diverse and highly aggressive breast cancers that lack the expression of estrogen receptor, progesterone receptor, and HER2. Due to the lack of recognized molecular targets for therapy, chemotherapy remains the primary established treatment for TNBC. In TNBC, numerous exogenous and intrinsic factors cause accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) to disrupt cellular proteostasis in a condition termed ER stress. As an adaptation, cells activate a network of pathways, the unfolded protein response (UPR), to manage ER stress. Chronic stress, a risk factor in cancer initiation and progression, keeps the UPR engaged while its apoptotic function gets gradually attenuated. The UPR has been increasingly recognized to have crucial roles both in physiological contexts and tumor pathology. In this review, we summarize the factors that may contribute to the regulation of the UPR in TNBC and its impact on various aspects of tumor biology. In addition, we review recent progress on the pharmacological targeting of the UPR, which holds therapeutic potential for TNBC intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

BC:

Breast cancer

BiP:

Binding immunoglobulin protein

BL:

Basal-like

CHOP:

C/EBP homologous protein

CREB3:

cAMP responsive element binding protein 3

CREB3L:

cAMP responsive element binding protein 3 like

DC:

Dendritic cells

DR5:

Death receptor 5

eIF2α:

Eukaryotic translation initiation factor 2 alpha

EMT:

Epithelial to mesenchymal transition

ER:

Endoplasmic reticulum

ERAD:

Endoplasmic reticulum-associated degradation

ERSE:

Endoplasmic reticulum stress element

FAS:

Fatty acid synthase

FFA:

Free fatty acid

FOXO:

Forkhead box O

GAAC:

General amino acid control

GADD34:

Growth arrest and DNA damage-inducible protein 34

GCN2:

General control nonderepressible 2

GEF:

Guanine nucleotide exchange factor

HIF1α:

Hypoxia-inducible factor 1α

HRI:

Heme-regulated eIF2α kinase

IM:

Immunomodulatory

IRE1α:

Inositol-requiring enzyme 1α

ISR:

Integrated stress response

JNK:

JUN N-terminal kinase

LAR:

Luminal androgen receptor

M:

Mesenchymal

MEF:

Mouse embryonic fibroblasts

MSL:

Mesenchymal stem-like

NRF2:

Nuclear factor erythroid 2-related factor 2

PDAC:

Pancreatic ductal adenocarcinoma

PDX:

Patient-derived xenograft

PERK:

Protein kinase RNA (PKR)-like ER kinase

PHD3:

Prolyl-4-hydroxylase domain 3

PI3K:

Phosphoinositide 3-kinase

PR:

Progesterone receptor

RIDD:

Regulated IRE1α-dependent decay

ROS:

Reactive oxygen species

SERCA:

Sarcoplasmic/endoplasmic reticulum calcium ATPase

SREBP:

Sterol regulatory element binding protein

TCA:

Tricarboxylic acid cycle

TCGA:

The cancer genome atlas

TNBC:

Triple-negative breast cancer

TRAF2:

TNF-receptor-associated factor 2

uORF:

Upstream open reading frame

UPR:

Unfolded protein response

UPRE:

Unfolded protein response element

VHL:

von Hippel-Lindau

XBP1:

X-box binding protein 1

References

  1. Dejeans N, Barroso K, Fernandez-Zapico ME, Samali A, Chevet E. Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin Cancer Biol. 2015;33:67–73.

    Article  CAS  PubMed  Google Scholar 

  2. Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: mechanisms and targets for therapy. Semin Cancer Biol. 2015;33:3–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14(9):581–97.

    Article  CAS  PubMed  Google Scholar 

  4. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer Cell. 2014;25(5):563–73.

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508(7494):103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, et al. Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 2014;4(6):702–15.

    Article  CAS  PubMed  Google Scholar 

  7. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L, et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood. 2012;119(24):5772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168(4):692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 2014;124(6):2626–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12(9):703–19.

    Article  CAS  PubMed  Google Scholar 

  12. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326–32.

    Article  CAS  PubMed  Google Scholar 

  13. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  PubMed  Google Scholar 

  14. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89.

    Article  CAS  PubMed  Google Scholar 

  15. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  CAS  PubMed  Google Scholar 

  16. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10(11):3787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993;73(6):1197–206.

    Article  CAS  PubMed  Google Scholar 

  18. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997;90(6):1031–9.

    Article  CAS  PubMed  Google Scholar 

  19. Mori K, Ma W, Gething MJ, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993;74(4):743–56.

    Article  CAS  PubMed  Google Scholar 

  20. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, et al. The unfolded protein response signals through high-order assembly of Ire1. Nature. 2009;457(7230):687–93.

    Article  CAS  PubMed  Google Scholar 

  21. Lee KP, Dey M, Neculai D, Cao C, Dever TE, Sicheri F. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell. 2008;132(1):89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881–91.

    Article  CAS  PubMed  Google Scholar 

  23. Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell. 2001;107(7):893–903.

    Article  CAS  PubMed  Google Scholar 

  24. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–6.

    Article  CAS  PubMed  Google Scholar 

  25. Cox JS, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell. 1996;87(3):391–404.

    Article  CAS  PubMed  Google Scholar 

  26. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23(21):7448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu G, Ota A, Ren S, Franklin S, Rau CD, Ping P, et al. PPM1l encodes an inositol requiring-protein 1 (IRE1) specific phosphatase that regulates the functional outcome of the ER stress response. Mol Metab. 2013;2(4):405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren S, Lu G, Ota A, Zhou ZH, Vondriska TM, Lane TF, et al. IRE1 phosphatase PP2Ce regulates adaptive ER stress response in the postpartum mammary gland. PLoS One. 2014;9(11):e111606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rubio C, Pincus D, Korennykh A, Schuck S, El-Samad H, Walter P. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J Cell Biol. 2011;193(1):171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prischi F, Nowak PR, Carrara M, Ali MM. Phosphoregulation of Ire1 RNase splicing activity. Nat Commun. 2014;5:3554.

    Article  CAS  PubMed  Google Scholar 

  31. Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313(5783):104–7.

    Article  CAS  PubMed  Google Scholar 

  32. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245–54.

    Article  CAS  PubMed  Google Scholar 

  33. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6.

    Article  CAS  PubMed  Google Scholar 

  34. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271–4.

    Article  CAS  PubMed  Google Scholar 

  35. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7(6):1165–76.

    Article  CAS  PubMed  Google Scholar 

  36. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004;101(31):11269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004;167(1):27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, et al. Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol. 2003;163(4):767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma Y, Hendershot LM. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem. 2003;278(37):34864–73.

    Article  CAS  PubMed  Google Scholar 

  40. Lee YY, Cevallos RC, Jan E. An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2alpha phosphorylation. J Biol Chem. 2009;284(11):6661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell. 2012;48(3):353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23(20):7198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang W, Hietakangas V, Wee S, Lim SC, Gunaratne J, Cohen SM. ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes Dev. 2013;27(4):441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355–64.

    Article  CAS  PubMed  Google Scholar 

  46. Guan D, Wang H, Li VE, Xu Y, Yang M, Shen Z. N-glycosylation of ATF6beta is essential for its proteolytic cleavage and transcriptional repressor function to ATF6alpha. J Cell Biochem. 2009;108(4):825–31.

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007;13(3):351–64.

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–76.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, Mori K. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J Biochem. 2004;136(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 2000;20(18):6755–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124(3):587–99.

    Article  CAS  PubMed  Google Scholar 

  52. Saito A, Kanemoto S, Zhang Y, Asada R, Hino K, Imaizumi K. Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2. Mol Cell. 2014;53(1):127–39.

    Article  CAS  PubMed  Google Scholar 

  53. Kondo S, Saito A, Hino S, Murakami T, Ogata M, Kanemoto S, et al. BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol Cell Biol. 2007;27(5):1716–29.

    Article  CAS  PubMed  Google Scholar 

  54. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, et al. OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol. 2005;7(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  55. Brewer JW. Regulatory crosstalk within the mammalian unfolded protein response. Cell Mol Life Sci. 2014;71(6):1067–79.

    Article  CAS  PubMed  Google Scholar 

  56. Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science. 2014;345(6192):98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Walter F, Schmid J, Dussmann H, Concannon CG, Prehn JH. Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival. Cell Death Differ. 2015;22(9):1502–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta A, Hossain MM, Miller N, Kerin M, Callagy G, Gupta S. NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2alpha-ATF4 signalling in breast cancer. Oncogene. 2016;35(45):5860–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsuru A, Imai Y, Saito M, Kohno K. Novel mechanism of enhancing IRE1alpha-XBP1 signalling via the PERK-ATF4 pathway. Sci Rep. 2016;6:24217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 2011;22(22):4390–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 2015;33:107–38.

    Article  CAS  PubMed  Google Scholar 

  62. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu G, Wang M, Spike B, Gray PC, Shen J, Lee SH, et al. Differential requirement of GRP94 and GRP78 in mammary gland development. Sci Rep. 2014;4:5390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hasegawa D, Calvo V, Avivar-Valderas A, Lade A, Chou HI, Lee YA, et al. Epithelial Xbp1 is required for cellular proliferation and differentiation during mammary gland development. Mol Cell Biol. 2015;35(9):1543–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis KR, Giesy SL, Long Q, Krumm CS, Harvatine KJ, Boisclair YR. XBP1 regulates the biosynthetic capacity of the mammary gland during lactation by controlling epithelial expansion and endoplasmic reticulum formation. Endocrinology. 2016;157(1):417–28.

    Article  CAS  PubMed  Google Scholar 

  66. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB, et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci U S A. 2008;105(42):16314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  69. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  70. Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R. Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 2012;72(13):3337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clarke R, Cook KL. Unfolding the role of stress response signaling in endocrine resistant breast cancers. Front Oncol. 2015;5:140.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hu R, Warri A, Jin L, Zwart A, Riggins RB, Fang HB, et al. NF-kappaB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 2015;35(2):379–90.

    Article  CAS  PubMed  Google Scholar 

  73. Rajapaksa G, Nikolos F, Bado I, Clarke R, Gustafsson JA, Thomas C. ERbeta decreases breast cancer cell survival by regulating the IRE1/XBP-1 pathway. Oncogene. 2015;34(31):4130–41.

    Article  CAS  PubMed  Google Scholar 

  74. Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007;21(14):4013–27.

    Article  CAS  PubMed  Google Scholar 

  75. Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM, et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Investig. 2011;5(1):35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cook KL, Clarke PA, Parmar J, Hu R, Schwartz-Roberts JL, Abu-Asab M, et al. Knockdown of estrogen receptor-alpha induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. FASEB J. 2014;28(9):3891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cook KL, Clarke R. Estrogen receptor-alpha signaling and localization regulates autophagy and unfolded protein response activation in ER+ breast cancer. Receptors Clin Investig. 2014;1(6):e316.

    PubMed  PubMed Central  Google Scholar 

  78. Shajahan-Haq AN, Cook KL, Schwartz-Roberts JL, Eltayeb AE, Demas DM, Warri AM, et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer. 2014;13:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet. 2017;389:2430–42.

    Article  CAS  PubMed  Google Scholar 

  81. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16(Suppl 1):61–70.

    Article  PubMed  Google Scholar 

  83. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  84. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang J, Gao X, Qin P, He H, Cai ZG, Mu GY, et al. Expression of glucose regulated protein 78 in human triple negative breast cancer and its clinical implications. Int J Clin Exp Pathol. 2016;9(3):3134–42.

    CAS  Google Scholar 

  86. Zheng YZ, Cao ZG, Hu X, Shao ZM. The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res Treat. 2014;145(2):349–58.

    Article  CAS  PubMed  Google Scholar 

  87. Guo L, Chi Y, Xue J, Ma L, Shao Z, Wu J. Phosphorylated eIF2alpha predicts disease-free survival in triple-negative breast cancer patients. Sci Rep. 2017;7:44674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R, et al. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer. 2008;123(1):85–8.

    Article  CAS  PubMed  Google Scholar 

  89. Andruska N, Zheng X, Yang X, Helferich WG, Shapiro DJ. Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor alpha-positive breast cancer. Oncogene. 2015;34(29):3760–9.

    Article  CAS  PubMed  Google Scholar 

  90. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410.

    Article  CAS  PubMed  Google Scholar 

  91. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.

    Article  CAS  PubMed  Google Scholar 

  92. Koritzinsky M, Levitin F, van den Beucken T, Rumantir RA, Harding NJ, Chu KC, et al. Two phases of disulfide bond formation have differing requirements for oxygen. J Cell Biol. 2013;203(4):615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2. Mol Cell Biol. 2002;22(21):7405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 2004;64(17):5943–7.

    Article  CAS  PubMed  Google Scholar 

  95. Rouschop KM, Dubois LJ, Keulers TG, van den Beucken T, Lambin P, Bussink J, et al. PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc Natl Acad Sci U S A. 2013;110(12):4622–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 2005;24(19):3470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood. 2007;110(10):3610–7.

    Article  CAS  PubMed  Google Scholar 

  98. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.

    Article  CAS  PubMed  Google Scholar 

  99. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17(10):1374–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol. 2002;3(6):411–21.

    Article  CAS  PubMed  Google Scholar 

  101. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell. 2000;6(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  102. Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol. 2005;59:407–50.

    Article  CAS  PubMed  Google Scholar 

  103. Moore CE, Omikorede O, Gomez E, Willars GB, Herbert TP. PERK activation at low glucose concentration is mediated by SERCA pump inhibition and confers preemptive cytoprotection to pancreatic beta-cells. Mol Endocrinol. 2011;25(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  104. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991;266(26):17067–71.

    CAS  PubMed  Google Scholar 

  105. Iurlaro R, Puschel F, Leon-Annicchiarico CL, O'Connor H, Martin SJ, Palou-Gramon D, et al. Glucose deprivation induces ATF4-mediated apoptosis through TRAIL death receptors. Mol Cell Biol. 2017;37(10):e00479–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeng L, Lu M, Mori K, Luo S, Lee AS, Zhu Y, et al. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 2004;23(4):950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Muaddi H, Majumder M, Peidis P, Papadakis AI, Holcik M, Scheuner D, et al. Phosphorylation of eIF2alpha at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency. Mol Biol Cell. 2010;21(18):3220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Genovese G, Carugo A, Tepper J, Robinson FS, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542(7641):362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Babour A, Bicknell AA, Tourtellotte J, Niwa M. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance. Cell. 2010;142(2):256–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koh CM, Sabo A, Guccione E. Targeting MYC in cancer therapy: RNA processing offers new opportunities. BioEssays. 2016;38(3):266–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kress TR, Sabo A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer. 2015;15(10):593–607.

    Article  CAS  PubMed  Google Scholar 

  112. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 2012;122(12):4621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol. 2006;8(10):1053–63.

    Article  CAS  PubMed  Google Scholar 

  117. Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7(12):979–87.

    Article  CAS  PubMed  Google Scholar 

  118. Namba T, Chu K, Kodama R, Byun S, Yoon KW, Hiraki M, et al. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1alpha/XBP1 pathway. Oncotarget. 2015;6(24):19990–20001.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, Gordan JD, Dai MS, Lu H, et al. Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem. 2006;281(40):30036–45.

    Article  CAS  PubMed  Google Scholar 

  120. Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A. 2000;97(23):12625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.

    Article  CAS  PubMed  Google Scholar 

  123. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP 1LC3B and ATG5. J Clin Invest. 2010;120(1):127–41.

    Article  CAS  PubMed  Google Scholar 

  124. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol. 2011;31(17):3616–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  127. Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–49.

    Article  CAS  PubMed  Google Scholar 

  128. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology. 2006;147(7):3398–407.

    Article  CAS  PubMed  Google Scholar 

  129. Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ. Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia. 2009;52(11):2369–73.

    Article  CAS  PubMed  Google Scholar 

  130. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 2007;50(4):752–63.

    Article  CAS  PubMed  Google Scholar 

  131. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology. 2004;145(11):5087–96.

    Article  CAS  PubMed  Google Scholar 

  132. Oh YS, Lee YJ, Kang Y, Han J, Lim OK, Jun HS. Exendin-4 inhibits glucolipotoxic ER stress in pancreatic beta cells via regulation of SREBP1c and C/EBPbeta transcription factors. J Endocrinol. 2013;216(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  133. Colgan SM, Tang D, Werstuck GH, Austin RC. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol. 2007;39(10):1843–51.

    Article  CAS  PubMed  Google Scholar 

  134. Lee JS, Mendez R, Heng HH, Yang ZQ, Zhang K. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am J Transl Res. 2012;4(1):102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell. 2008;15(6):829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell. 2015;27(3):354–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Binet F, Sapieha P. ER stress and angiogenesis. Cell Metab. 2015;22(4):560–75.

    Article  CAS  PubMed  Google Scholar 

  139. Mahadevan NR, Zanetti M. Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment. J Immunol. 2011;187(9):4403–9.

    Article  CAS  PubMed  Google Scholar 

  140. Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med. 2012;18(10):589–98.

    Article  CAS  PubMed  Google Scholar 

  141. Maurel M, Samali A, Chevet E. Endoplasmic reticulum stress: at the crossroads of inflammation and metabolism in hepatocellular carcinoma development. Cancer Cell. 2014;26(3):301–3.

    Article  CAS  PubMed  Google Scholar 

  142. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 2010;107(35):15553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K, et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol. 2006;26(24):9517–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang Y, Alam GN, Ning Y, Visioli F, Dong Z, Nor JE, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res. 2012;72(20):5396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Karali E, Bellou S, Stellas D, Klinakis A, Murphy C, Fotsis T. VEGF signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol Cell. 2014;54(4):559–72.

    Article  CAS  PubMed  Google Scholar 

  146. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A. 2011;108(16):6561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Warri A, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res. 2016;76(19):5657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Molecular pathways: immunosuppressive roles of IRE1alpha-XBP1 signaling in dendritic cells of the tumor microenvironment. Clin Cancer Res. 2016;22(9):2121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cubillos-Ruiz JR, Glimcher LH. Targeting abnormal ER stress responses in tumors: a new approach to cancer immunotherapy. Oncoimmunology. 2016;5(3):e1098802.

    Article  CAS  PubMed  Google Scholar 

  150. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011;117(4):1311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tang CH, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest. 2014;124(6):2585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ri M, Tashiro E, Oikawa D, Shinjo S, Tokuda M, Yokouchi Y, et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood cancer journal. 2012;2(7):e79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, et al. Discovery of 7-Methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55(16):7193–207.

    Article  CAS  PubMed  Google Scholar 

  154. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013;73(6):1993–2002.

    Article  CAS  PubMed  Google Scholar 

  155. Vandewynckel YP, Laukens D, Bogaerts E, Paridaens A, Van den Bussche A, Verhelst X, et al. Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress: a PERK for hepatocellular carcinoma therapy. Hepatol Int. 2015;9(1):93–104.

    Article  PubMed  Google Scholar 

  156. Palam LR, Gore J, Craven KE, Wilson JL, Korc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 2015;6:e1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hamamura K, Minami K, Tanjung N, Wan Q, Koizumi M, Matsuura N, et al. Attenuation of malignant phenotypes of breast cancer cells through eIF2alpha-mediated downregulation of Rac1 signaling. Int J Oncol. 2014;44(6):1980–8.

    Article  CAS  PubMed  Google Scholar 

  158. Zhao X, Zhang C, Zhou H, Xiao B, Cheng Y, Wang J, et al. Synergistic antitumor activity of the combination of salubrinal and rapamycin against human cholangiocarcinoma cells. Oncotarget. 2016;7(51):85492–501.

    PubMed  PubMed Central  Google Scholar 

  159. Wielenga MC, Colak S, Heijmans J, van Lidth de Jeude JF, Rodermond HM, Paton JC, et al. ER-stress-induced differentiation sensitizes colon cancer stem cells to chemotherapy. Cell Rep. 2015;13(3):490–4.

    Article  CAS  Google Scholar 

  160. Cerezo M, Lehraiki A, Millet A, Rouaud F, Plaisant M, Jaune E, et al. Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell. 2016;29(6):805–19.

    Article  CAS  PubMed  Google Scholar 

  161. Jiang D, Niwa M, Koong AC. Targeting the IRE1alpha-XBP1 branch of the unfolded protein response in human diseases. Semin Cancer Biol. 2015;33:48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A. 2012;109(15):E869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015;14(4):261–78.

    Article  CAS  PubMed  Google Scholar 

  164. Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. elife. 2015;4:e07314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly. Elife. 2015;4.

    Google Scholar 

  166. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife. 2013;2:e00498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (NCI) (1R37CA228304-01 and 5P50CA186784-03 SPORE Career Development Award to X. C.), Cancer Prevention and Research Institutes of Texas (CPRIT) (RR150009 to X. C.), and Susan G. Komen for the Cure (CCR16380871 to X. C.). The authors declare no potential conflicts of interest. The authors apologize to those whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, N., Peng, F., Chen, X. (2019). The Unfolded Protein Response in Triple-Negative Breast Cancer. In: Clarke, R. (eds) The Unfolded Protein Response in Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05067-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05067-2_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-05065-8

  • Online ISBN: 978-3-030-05067-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics